精英家教网 > 高中数学 > 题目详情
14.已知A,B,C三点在球O的球面上,AB=BC=CA=3,且球心O到平面ABC的距离等于球半径的$\frac{1}{3}$,则球O的表面积为$\frac{27}{2}$π.

分析 设出球的半径,小圆半径,通过已知条件求出两个半径,再求球的表面积.

解答 解:设球的半径为r,O′是△ABC的外心,外接圆半径为R=$\sqrt{3}$,
∵球心O到平面ABC的距离等于球半径的$\frac{1}{3}$,
∴得r2-$\frac{1}{9}$r2=3,得r2=$\frac{27}{8}$.
球的表面积S=4πr2=4π×$\frac{27}{8}$=$\frac{27}{2}$π.
故答案为:$\frac{27}{2}$π.

点评 本题考查球O的表面积,考查学生分析问题解决问题能力,空间想象能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设复数zn=xn+i•yn,其中xnyn∈R,n∈N*,i为虚数单位,zn+1=(1+i)•zn,z1=3+4i,复数zn在复平面上对应的点为Zn
(1)求复数z2,z3,z4的值;
(2)证明:当n=4k+1(k∈N*)时,$\overrightarrow{O{Z_n}}$∥$\overrightarrow{O{Z_1}}$;
(3)求数列{xn•yn}的前100项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆锥和圆柱的底面半径均为R,高均为3R,则圆锥和圆柱的表面积之比是$\frac{\sqrt{10}+1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)当x∈[-$\frac{π}{2}$,$\frac{π}{2}$]时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=Asin(ωx+φ)的图象如图所示,则该函数的解析式可能是(  )
A.f(x)=$\frac{3}{4}$sin($\frac{3}{2}$x+$\frac{π}{6}$)B.f(x)=$\frac{4}{5}$sin($\frac{4}{5}$x+$\frac{1}{5}$)C.f(x)=$\frac{4}{5}$sin($\frac{5}{6}$x+$\frac{π}{6}$)D.f(x)=$\frac{4}{5}$sin($\frac{2}{3}$x-$\frac{1}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,若a2=3,a5=9,则其前6项和S6=(  )
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,∠A=60°,AC=2$\sqrt{3}$,BC=3$\sqrt{2}$,则角B等于(  )
A.30°B.45°C.90°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(ax-1)5的展开式中的x3系数为80,则其展开式中x2的系数为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在全体正实数上的函数f(4)=1,f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示lnb≥ln2a且f(2a+b)≥1,则$\frac{3b+6}{2a+4}$的取值范围是(  )
A.[1,+∞]B.[2,+∞]C.[$\frac{3}{4}$,2]D.[0,3]

查看答案和解析>>

同步练习册答案