精英家教网 > 高中数学 > 题目详情
16.1202年,意大利数学家斐波那契在他的书中给出了一个关于兔子繁殖的递推关系:${F}_{n}{=}_{{F}_{n-1}}{+}_{{F}_{n-2}}$(n≥3),其中Fn表示第n个月的兔子的总对数,F1=F2=1,则F8的值为(  )
A.13B.21C.34D.55

分析 直接由已知计算得答案.

解答 解:由${F}_{n}{=}_{{F}_{n-1}}{+}_{{F}_{n-2}}$(n≥3),且F1=F2=1,
则F3=F2+F1=2,F4=F3+F2=3,
F5=F4+F3=5,F6=F5+F4=8,F7=F6+F5=13,F8=F7+F6=21.
故选:B.

点评 本题考查数列递推式,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.为了减少能源损耗,某工厂需要给生产车间建造可使用20年的隔热层.已知建造该隔热层每厘米厚的建造成本为3万元.该生产车间每年的能源消耗费用M(单位:万元)与隔热层厚度x(单位:厘米)满足关系:M(x)=$\frac{k}{x+2}$(0≤x≤10),若不建隔热层,每年能源消耗费用为7.5万元,设f(x)为隔热层建造费用与20年的能源消耗费用只和.
(1)求k的值及f(x)的表达式;
(2)试问当隔热层修建多厚时,总费用f(x)达到最少?并求出最少费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-ax2+lnx(a∈R).
(1)讨论f(x)的单调性;
(2)若?x∈(1,+∞),f(x)>-a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cos2x+acosx+2.
(1)若a>0,且当x∈R时,f(x)的最小值为-1,求实数a的值;
(2)若a=2,且当x∈[0,$\frac{π}{2}$]时,f(x)>m(cosx+1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若cosα=-$\frac{1}{2}$,-π<α<0,则角α=-$\frac{2π}{3}$.(用弧度表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,利用随机模拟方法计算阴影部分面积时,利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换a=a1+1,b=4b1,试验进行100次,前98次中落在阴影部分内的样本点数为40,且最后两次试验的随机数为a1=0.5,b1=0.3及a1=0.2,b1=0.6,那么本次模拟得出的面积约为1.64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.己知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X≤μ+2σ)=0.9545,P(μ-σ<X≤μ+σ)=0.6827,若μ=3,σ=1,则P(4<X≤5)=(  )
A.0.1358B.0.1359C.0.2716D.0.2718

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的程序框图,若输入x,k,b,p的值分别为1,-2,9,3,则输出x的值为(  )
A.-29B.19C.47D.-5

查看答案和解析>>

同步练习册答案