精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=2x,则下列不等式不成立的是


  1. A.
    f(sinπ)>f(cosπ)
  2. B.
    f(sin1)<f(cos1)
  3. C.
    f(sin2)<f(cos2)
  4. D.
    f(sin3)<f(cos3)
D
分析:确定偶函数f(x)在(-1,0)上是增函数,f(x)在(0,1)上是减函数,即可得出结论.
解答:x∈[3,4]时,f(x)=2x,故偶函数f(x)在[3,4]上是增函数,
又定义在R上的偶函数f(x)满足f(x)=f(x+2),故函数的周期是2
所以偶函数f(x)在(-1,0)上是增函数,
所以f(x)在(0,1)上是减函数,
对于A,sinπ>cosπ,∴f(sinπ)>f(cosπ),
对于B,sin1>cos1,∴,f(sin1)<f(cos1);
对于C,-sin2<cos2,∴f(-sin2)<f(cos2),∴f(sin2)<f(cos2);
对于D,-sin3>cos3,∴f(-sin3)>f(cos3),∴f(sin3)>f(cos3),
故选D.
点评:本题考查函数的周期性与函数的单调性比较大小,构思新颖,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案