分析 由tanB=$\frac{1}{2}$,求出cosB,sinB,由tanC=2,求出cosC,sinC,从而求出sinA=sin(B+C)=sinBcosC+cosBsinC=1,得到A=$\frac{π}{2}$,由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,得a=$\frac{bsinA}{sinB}$=$\sqrt{5}b$,
再由S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×\sqrt{5}b×b×\frac{2\sqrt{5}}{5}$=1,解得b=1,由此能求出结果.
解答 解:∵tanB=$\frac{1}{2}$>0,∴0<B<$\frac{π}{2}$,
∴cosB=$\sqrt{\frac{1}{1+ta{n}^{2}B}}$=$\frac{2\sqrt{5}}{5}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{5}}{5}$,
又tanC=2>0,∴0<C<$\frac{π}{2}$,
∴cosC=$\sqrt{\frac{1}{1+ta{n}^{2}C}}$=$\frac{\sqrt{5}}{5}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{5}}{5}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{5}}{5}×\frac{\sqrt{5}}{5}+\frac{2\sqrt{5}}{5}×\frac{2\sqrt{5}}{5}$=1,
∵0<A<π,∴A=$\frac{π}{2}$,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,
得:a=$\frac{bsinA}{sinB}$=$\frac{b×1}{\frac{\sqrt{5}}{5}}$=$\sqrt{5}b$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×\sqrt{5}b×b×\frac{2\sqrt{5}}{5}$=1,解得b=1,
∴a=$\sqrt{5}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{5-1}=2$.
∴△ABC外接圆的直径2R=$\frac{a}{sinA}$=a=$\sqrt{5}$.
点评 此题属于解三角形的题型,涉及的知识有:正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届重庆市高三10月月考数学(文)试卷(解析版) 题型:选择题
已知唐校长某日晨练时,行走的时间
与离家的直线距离
之间的函数图象(如下图).若用黑点表示唐校长家的位置,则唐校长晨练所走的路线可能是( )
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7\sqrt{2}}{8}$ | B. | $\frac{5\sqrt{2}}{4}$ | C. | $\frac{7\sqrt{3}}{8}$ | D. | $\frac{5\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com