精英家教网 > 高中数学 > 题目详情
16.执行如图所示的程序框图,如果输入的t=50,则输出的n=(  )
A.5B.6C.7D.8

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:第一次运行后s=2,a=3,n=1;
第二次运行后s=5,a=5,n=2;
第三次运行后s=10,a=9,n=3;
第四次运行后s=19,a=17,n=4;
第五次运行后s=36,a=33,n=5;
第六次运行后s=69,a=65,n=6;
此时不满足s<t,输出n=6,
故选:B.

点评 本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.数列{an}的前n项和Sn=an-1(a≠0,a≠1).试证明数列{an}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,A,B,C,D为平面四边形ABCD的四个内角.
(1)证明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$.
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan$\frac{A}{2}$+tan$\frac{C}{2}$的值.
(3)若A+C=180°,AB=a,BC=b,CD=c,AD=d,记p=$\frac{a+b+c+d}{2}$,四边形ABCD的面积为S,求证:S=$\sqrt{(p-a)(p-b)(p-c)(p-d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足条件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ x-2y≤0\end{array}\right.$,若存在实数a使得函数z=ax+y(a<0)取到最大值z(a)的解有无数个,则a=-1,z(a)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则$\frac{{{a^2}+{e^2}}}{2b}$的最小值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}是等差数列,且a7-2a4=6,a3=2,则公差d=(  )
A.2$\sqrt{2}$B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{x}{{e}^{x}}$+sin2x,则$\underset{lim}{△x→0}$$\frac{f(△x)-f(0)}{△x}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点O为坐标原点,椭圆C$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点$(\sqrt{3},\frac{1}{2})$在椭圆C上.直线l过点(1,1),且与椭圆C交于A,B两点.
(I)求椭圆C的方程;
(Ⅱ)椭圆C上是否存在一点P,使得$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OP}$?若存在,求出此时直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,集合A={-1,1,3,5},集合B={x∈R|x≤2},则图中阴影部分表示的集合(  )
A.{-1,1}B.{3,5}C.{-1,1}D.{-1,1}

查看答案和解析>>

同步练习册答案