精英家教网 > 高中数学 > 题目详情
3.设全集U是实数集R,M={x|x<1},N={x|0<x<2},则集合M∩N等于(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|0<x<1}D.{x|x<1}

分析 直接利用交集的求法求解即可.

解答 解:全集U是实数集R,M={x|x<1},N={x|0<x<2},则集合M∩N={x|0<x<1}.
故选:C.

点评 本题考查交集的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)的定义域为(0,+∞),且满足f(4)=1,对任意x1、x2∈(0,+∞)都有f(x1•x2)=f(x1)+f(x2),当x∈(0,1)时,f(x)<0.
(1)证明函数f(x)在(0,+∞)上是增函数;
(2)解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在(-1,1)上的奇函数,且当x∈(0,1)时,f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)求f(x)在(-1,1)上的解析式;
(2)证明f(x)在(0,1)上是减函数;
(3)当m取何值时,f(x)=m在(-1,0)上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.把函数$f(x)=sin({2x+\frac{π}{3}})$的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=$\frac{1}{x•sinθ}$+2lnx在[$\frac{1}{2}$,+∞)上为增函数,且θ∈(0,π),f(x)=mx-$\frac{m-1}{x}$,m∈R.
(1)求θ的值;
(2)当m≥1,x≥1时,求证:f(x)≥g(x);
(3)设h(x)=$\frac{2e}{x}$,若在[1,e]上至少存在一个x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“a+b是偶数”是“a、b都是偶数”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:存在x∈R,使tanx=$\frac{\sqrt{2}}{2}$,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p且q”是真命题;
②命题“p且¬q”是假命题;
③命题“¬p或q”是真命题;
④命题“¬p或¬q”是假命题,
其中正确的是(  )
A.②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,已知角A,B,C所对的边分别为a,b,c,且bcosC=(3a-c)cosB.
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=$2\sqrt{2}$,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一个盒子里装有6张卡片,其中红色卡片4张,编号分别为3,6,8,9;蓝色卡片2张,编号分别为6,8,从盒子中任取3张卡片(假设取到任何一张卡片的可能性相同).
(Ⅰ)求取出的3张卡片中,含有编号为6的卡片的概率;
(Ⅱ)记X为取到的卡片中红色卡片的张数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案