精英家教网 > 高中数学 > 题目详情
13.一个盒子里装有6张卡片,其中红色卡片4张,编号分别为3,6,8,9;蓝色卡片2张,编号分别为6,8,从盒子中任取3张卡片(假设取到任何一张卡片的可能性相同).
(Ⅰ)求取出的3张卡片中,含有编号为6的卡片的概率;
(Ⅱ)记X为取到的卡片中红色卡片的张数,求X的分布列和数学期望.

分析 (Ⅰ)取出的3张卡片中,利用互斥事件概率计算公式能求出含有编号为6的卡片的概率.
(Ⅱ)由题意取到红色卡片的张数X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(Ⅰ)取出的3张卡片中,含有编号为6的卡片的概率:
p=$\frac{{C}_{2}^{2}{C}_{4}^{1}+{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{4}{5}$.
(Ⅱ)由题意取到红色卡片的张数X的可能取值为1,2,3,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(X=2)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(X=3)=$\frac{{C}_{4}^{3}{C}_{2}^{0}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴X的分布列为:

 X 1 2 3
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
EX=$1×\frac{1}{5}+2×\frac{3}{5}+3×\frac{1}{5}$=2.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设全集U是实数集R,M={x|x<1},N={x|0<x<2},则集合M∩N等于(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|0<x<1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:m>4,命题q:方程4x2+4(m-2)x+9=0无实根,若p∨q为真,p∧q为假,¬p为假,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)计算:lg14-2lg$\frac{7}{3}$+lg7-lg18
(Ⅱ)化简下列各式(a>0,b>0)
(1)$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$(a>0)
(2)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图是一个算法流程图,则输出的m值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四面体ABCD中,AB⊥CD,AB⊥AD.M,N,Q分别为棱AD,BD,AC的中点.
(1)求证:CD∥平面MNQ;
(2)求证:平面MNQ⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的正方形中随机投掷10000 个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值(  )
附“若X~N(μ,σ2),则
P(μ-σ<X≤μ+σ)=0.6826.
p(μ-2σ<X≤μ+2σ)=0.9544.
A.1193B.1359C.2718D.3413

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)的定义域D⊆(0,+∞),若f(x)满足对任意的一个三边长为a,b,c∈D的三角形,都有f(a),f(b),f(c)也可以成为一个三角形的三边长,则称f(x)为“保三角形函数”.
(1)判断g(x)=sinx,x∈(0,π)是否为“保三角形函数”,并说明理由;
(2)证明:函数h(x)=lnx,x∈[2,+∞)是“保三角形函数”;
(3)若f(x)=sinx,x∈(0,λ)是“保三角形函数”,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将4名同学录取到3所大学,则每所大学至少录取一名的概率为(  )
A.$\frac{4}{27}$B.$\frac{8}{27}$C.$\frac{4}{9}$D.$\frac{8}{9}$

查看答案和解析>>

同步练习册答案