精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和sn满足
an-1
sn
=
a-1
a
(a>0,且a≠1).数列{bn}满足bn=an•lgan
(1)求数列{an}的通项.
(2)若对一切n∈N+都有bn<bn+1,求a的取值范围.
分析:(1)由题意知,a1=a,Sn=
a
a-1
(an-1) ①
Sn-1=
a
a-1
(an-1-1) ②
,①-②,得
an
an-1
=a
,由此能求出数列{an}的通项公式.
(2)由bn=an•lgan,知bn=nanlga,当对一切n∈N+,都有bn<bn-1,即有nanlga<(n+1)an-1lga,由此进行分类讨论,能够得到a的取值范围.
解答:解:(1)由题意知,当n=1时,a1=a,
当n≥2时,Sn=
a
a-1
(an-1) ①
Sn-1=
a
a-1
(an-1-1) ②

①-②,得
an
an-1
=a

∴数列{an}是等比数列,
∴an=an(n∈N+).
(2)∵bn=an•lgan
∴bn=nanlga,
当对一切n∈N+,都有bn<bn+1
即有nanlga<(n+1)an-1lga,
当lga>0,即a>1时,a>
n
n+1
对一切n∈N+都成立,∴a>1.
当lga<0,即0时,有a<
n
n+1
对一切n∈N+都成立,∴0<a<
1
2

综上所述a>1或0<a<
1
2
点评:本题考查数列的通项公式和数列与不等式的综合运用,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案