精英家教网 > 高中数学 > 题目详情
12.探求凸多面体的面F、顶点数V和棱数E之间的关系得到的结论是(  )
A.无确定关系B.F+E-V=2C.E+V-F=2D.F+V-E=2

分析 通过列举正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:V+F-E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.

解答 解:凸多面体的面数为F、顶点数为V和棱数为E,举例如下
①正方体:F=6,V=8,E=12,得V+F-E=8+6-12=2;
②三棱柱:F=5,V=6,E=9,得V+F-E=5+6-9=2;
③三棱锥:F=4,V=4,E=6,得V+F-E=4+4-6=2.
根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:V+F-E=2
再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.
因此归纳出一般结论:V+F-E=2
故选:D.

点评 本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,ABC-A1B1C1是底面边长为2,高为$\frac{{\sqrt{3}}}{2}$的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).
(Ⅰ)证明:PQ∥A1B1
(Ⅱ)当$λ=\frac{1}{2}$时,求点C到平面APQB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中直线l过点P($\frac{{\sqrt{10}}}{2}$,0)且倾斜角为α,在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中曲线C的方程为ρ2(1+sin2θ)=1,已知直线l与曲线C交于不同两点M,N.
(1)求曲线C的直角坐标方程;
(2)求$\frac{{|{PM}|•|{PN}|}}{{|{MN}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正三棱锥的侧棱长为2,底面边长为3,则该正三棱锥的外接球的表面积为(  )
A.$\frac{4}{3}π$B.C.$\frac{32}{3}π$D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{3}{4}$x2tan2α+$\sqrt{10}$xcos(α+$\frac{π}{4}$),其中tanα=$\frac{1}{2}$,α∈(0,$\frac{π}{2}}$)
(I)求f(x)的解析式;
(Ⅱ)若数列{an}满足a1=$\frac{2}{3}$,an+1=f(an),n∈N*.求证:1<$\frac{1}{{1+{a_1}}}$+$\frac{1}{{1+{a_2}}}$+…+$\frac{1}{{1+{a_n}}}$<$\frac{3}{2}$(n∈N*,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第59个数对是(  )
A.(3,8)B.(4,7)C.(4,8)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρ2cos2θ-3ρ2sin2θ=30,圆O的圆心在原点,经过曲线C的右焦点F.
(1)求曲线C和圆O的标准方程;
(2)已知直线l的参数方程为$\left\{\begin{array}{l}x=4+tcosφ\\ y=-3+tsinφ\end{array}$(t为参数)与圆O交于B,C两点,其中B在第四象限,C在第一象限,若|BC|=5,∠FOC=α,求sin($\frac{π}{3}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{16}}}(x+1),x<0}\\{-{x^2}+x,x≥0}\end{array}}$,则关于x的方程f(x)=m(m∈R)恰有三个不同的实数根a,b,c,则a+b+c的取值范围是(  )
A.($\frac{1}{4}$,$\frac{1}{2}$)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=$\left\{\begin{array}{l}{2^x}-1\;,\;x≤0\\{log_2}(x+1)\;,\;x>0\end{array}$若f(x)=-$\frac{3}{4}$,则x的值是-2.

查看答案和解析>>

同步练习册答案