【题目】已知函数
.
(1)若
,证明:曲线
在
处的切线与直线
垂直;
(2)若
,当
时,证明:
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为:
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为:
.
(Ⅰ)求直线
与曲线
公共点的极坐标;
(Ⅱ)设过点
的直线
交曲线
于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.
![]()
(1)证明:直线AB恒过定点Q;
(2)试求△PAB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 |
|
|
|
|
|
|
|
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 |
|
|
|
|
|
|
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
![]()
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆
过以下4个不同的点:
.
(1)求圆
的标准方程;
(2)先将圆
向左平移
个单位后,再将所有点的横坐标、纵坐标都伸长到原来的
倍得到圆
,若
两个点分别在直线
和
上,
为圆
上任意一点,且
(
为常数),证明直线
过圆
的圆心,并求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(
为参数),直线l的参数方程为
(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,射线m:
.
(1)求C和l的极坐标方程;
(2)设m与C和l分别交于异于原点的A,B两点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请120名同学每人随机写下一个x,y都小于1的正实数对
,再统计其中x,y能与1构成钝角三角形三边的数对
的个数m,最后根据统计个数m估计
的值.如果统计结果是
,那么可以估计
的值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:椭圆
的离心率为
,且
,过左焦点
作一条直线交椭圆于
、
两点,过线段
的中点
作
的垂线交
轴于点
.
![]()
(1)求椭圆方程;
(2)当
面积最大时,求直线
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com