精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=x2-$\frac{1}{2}$lnx.
(1)讨论函数f(x)的单调性;
(2)若g(x)=f(x)+$\frac{1}{2}$ax在区间(1,+∞)上没有零点,求实数a的取值范围.

分析 (1)求出函数的定义域,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数g(x)的表达式,单调函数的导数,解关于导函数的不等式,求出函数的单调区间,由g(x)≥0得$\frac{1}{2}$a≥$\frac{lnx}{2x}$-x,令y=$\frac{lnx}{2x}$-x,根据函数的单调性求出a的范围即可.

解答 解:(1)函数f(x)的定义域是(0,+∞),
f′(x)=$\frac{(2x-1)(2x+1)}{2x}$,
令f′(x)>0,解得:x>$\frac{1}{2}$,
令f′(x)<0,解得:0<x<$\frac{1}{2}$,
故f(x)在(0,$\frac{1}{2}$)递减,在($\frac{1}{2}$,+∞)递增;
(2)g(x)=x2-$\frac{1}{2}$lnx+$\frac{1}{2}$ax,
由g′(x)=$\frac{{4x}^{2}+ax-1}{2x}$>0,解得:x>$\frac{-a+\sqrt{{a}^{2}+16}}{8}$,
由g′(x)=$\frac{{4x}^{2}+ax-1}{2x}$<0,解得:x<$\frac{-a+\sqrt{{a}^{2}+16}}{8}$,
∴g(x)在(0,$\frac{{4x}^{2}+ax-1}{2x}$)递减,在($\frac{-a+\sqrt{{a}^{2}+16}}{8}$,+∞)递增,
又g(x)在(1,+∞)上没有零点,
∴g(x)>0在(1,+∞)恒成立,
由g(x)≥0得$\frac{1}{2}$a≥$\frac{lnx}{2x}$-x,
令y=$\frac{lnx}{2x}$-x,则y′=$\frac{2-2lnx-{4x}^{2}}{{4x}^{2}}$,
当x≥1时,y′<0,
∴y=$\frac{lnx}{2x}$-x在[1,+∞)递减,
∴x=1时,ymax=-1,
∴$\frac{1}{2}$a≥-1,即a∈[-2,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.下面有四个命题:
①三个平面两两互相垂直,则它们的交线也两两互相垂直;
②三条共点的直线两两互相垂直,分别由每两条直线所确定的平面也两两互相垂直;
③分别与两条互相垂直相交的直线垂直的两个平面互相垂直;
④分别经过两条互相垂直的直线的两个平面互相垂直.
其中正确的命题序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆x2+y2-2x-4y+3=0关于直线ax+by-3=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为2+$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+$\frac{x-2}{x+1}$,其中 a>1:
(1)证明:函数f(x)在(-1,∞)上为增函数;
(2)证明:不存在负实数x0使得f(x0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设M,N是抛物线y2=4x上分别位于x轴两侧的两个动点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,过点A(4,0)作MN的垂线与抛物线交于点P、Q两点,则四边形MPNQ面积的最小值为(  )
A.80B.100C.120D.160

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直角三角形ABC中,三内角成等差数列,最短边的长度为1,P为△ABC内的一点,且∠APB=∠APC=∠CPB=120°,则PA+PB+PC=(  )
A.$\sqrt{11}$B.$\sqrt{10}$C.2$\sqrt{2}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某省去年高三100000名考生英语成绩服从正态公布N(85,225),现随机抽取50名考生的成绩,发现全部介于[30,150]之间,将成绩按如下方式分成6组:第一组[30,50),第二组[50,70),…第6组[130,150],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)估算该50名考生成绩的众数和中位数.
(Ⅱ)求这50名考生成绩在[110,150]内的人中分数在130分以上的人数.
(Ⅲ)从这50名考生成绩在[110,150]的人中任意抽取2人,该2人成绩排名(从高到后)在全省前130名的人数记为X.求X的数学期望
(参考数据:若X~N(u,δ2
则P(u-δ<X≤u+δ)=0.6826
P(u-2δ<X≤u+2δ)=0.9544
P(u-3δ<X≤u+3δ)=0.9974)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,AB=8,AC=6,AD垂直BC于点D,E,F分别为AB,AC的中点,若$\overrightarrow{DE}$•$\overrightarrow{DF}$=6,则BC=(  )
A.2$\sqrt{13}$B.10C.2$\sqrt{37}$D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输出的n的值为5,则输入的T的最大值为(  )
A.108B.76C.61D.49

查看答案和解析>>

同步练习册答案