精英家教网 > 高中数学 > 题目详情
3.为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查.得到如下的统计结果.
表1:男生上网时间与频数分布表:
上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
人数525302515
表2:女生上网时间与频数分布表:
上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
人数1020402010
完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?

分析 (1)根据所给数据完成表1、2的2×2列联表;
(2)利用公式求出K2,与临界值比较,可得结论.

解答 解:

上网时间少于60分钟上网时间不少于60分钟合计
男生6040100
女生7030100
合计13070200
K2=$\frac{200×(1800-2800)^{2}}{100×100×130×70}≈\frac{200}{91}$≈2.20,
∵K2≈2.20<2.706.∴没有90%的把握认为“大学生上网时间与性别有关”.

点评 本题考查2×2列联表,考查独立性检验知识,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=ln(x2-(2a-b)x+b-a-2)为偶函数,且在区间[a,+∞)上单调递增,则实数a的取值范围是(  )
A.(-∞,-2)∪(1,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知x>0,a为大于2x的常数.
(1)求函数y=x(a-2x)的最大值;
(2)求y=$\frac{1}{a-2x}$-x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义城为R,当x>0时,f(x)<0,且对于任意实数x,y∈R有f(x+y)=f(x)+f(y),f(-1)=2.
(1)求f(0);
(2)判断函数的奇偶性并证明;
(3)判断函数的单调性并证明;
(4)求f(x)在[2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.30.7,30.5,log30.7的大小顺序是30.7>30.5>log30.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知焦点在x 轴上的椭圆C:mx2+ny2=1过点P(0,1),离心率为$\frac{\sqrt{6}}{3}$,A、B是椭圆上两个动点,且直线PA,PB的斜率满足kPAkPB=$\frac{2}{3}$,
(1)求椭圆的标准方程;
(2)求三角形PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,A={x|0<x<2},B={x|x<1},则图中阴影部分表示的集合为(  )
A.{x|x≥1}B.{x|0≤x≤1}C.{x|1≤x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.球面上有A、B、C、D四个点,若AB、AC、AD两两垂直,且AB=AC=AD=4,则该球的表面积为(  )
A.$\frac{80π}{3}$B.32πC.42πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:
级数全月应纳税所得额x税率
1不超过500元部分5%
2超过500元至2000元部分10%
3超过2000元至5000元部分15%
9超过100000元部分45%
(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?

查看答案和解析>>

同步练习册答案