精英家教网 > 高中数学 > 题目详情
已知椭圆,过椭圆上一点作倾斜角互补的两条直线,分别交椭圆两点.则直线的斜率为          .

试题分析:这题有一定的难度,考查的直线与圆锥曲线相交问题,考查同学们的计算打理能力,当然在解题时注意过程的简捷性,设,同时设的方程为,代入椭圆方程化简得:,显然是这个方程的两解,因此,用代替中的,得.所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,一个焦点为F(0,),且长轴长与短轴长的比是∶1.
 
(1)求椭圆C的方程;
(2)若椭圆C上在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PAPB分别交椭圆C于另外两点AB,求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的离心率是分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点轴上位于右侧的一点,且满足

(1)求椭圆的方程以及点的坐标;
(2)过点轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长。轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点

(1)求的方程;
(2)求证:
(3)记的面积分别为,若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.
(1)求椭圆E的方程;
(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A(x1y1),B(x2y2)是椭圆C=1(a>b>0)上两点,已知mn,若m·n=0且椭圆的离心率e,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则方程表示的曲线不可能是(   )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线交双曲线两点,为双曲线上异于的任意一点,则直线的斜率之积为(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆内有一点,过点的弦恰好以为中点,那么这条弦所在直线的斜率为     ,直线方程为      

查看答案和解析>>

同步练习册答案