精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-x(e为自然对数的底数).

(1)求f(x)的最小值;

(2)设不等式f(x)>ax的解集为P,且{x|0≤x≤2}P,求实数a的取值范围;

(3)设n∈N*,证明.

(1)解:f(x)的导数f′(x)=ex-1.

令f′(x)>0,解得x>0;令f′(x)<0,解得x<0.

从而f(x)在(-∞,0)内单调递减,在(0,+∞)内单调递增.

所以,当x=0时,f(x)取得最小值1.

(2)解:因为不等式f(x)>ax的解集为P,且{x|0≤x≤2}P,

所以对于任意x∈[0,2],不等式f(x)>ax恒成立.

由f(x)>ax,得(a+1)x<ex.

当x=0时,上述不等式显然成立,故只需考虑x∈(0,2]的情况.

将(a+1)x<ex变形为a<-1,

令g(x)=-1,则g(x)的导数g′(x)=,

令g′(x)>0,解得x>1;令g′(x)<0,解得x<1.

从而g(x)在(0,1)内单调递减,在(1,2)内单调递增.

所以,当x=1时,g(x)取得最小值e-1,

从而实数a的取值范围是(-∞,e-1).

(3)证明:由(1)得,对于任意x∈R,都有ex-x≥1,

即1+x≤ex.

令x=(n∈N*,i=1,2…,n-1),则0<1.

∴(1)n<()n=e-i(i=1,2,…,n-1),

即()n<e-i(i=1,2,…,n-1).

=()n+()n+…+()n+()n<e-(n-1)+e-(n-2)+…+e-1+1.

∵e-(n-1)+e-(n-2)+…+e-1+1=,

.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
e-x-2,(x≤0)
2ax-1,(x>0)
(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在[
1
2
,+∞)
上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-z+log3
1
x
,若实数x0是方程f(x)=0的解,且x1>x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•孝感模拟)已知函数
f(x)=
e-x-1,(x≤0)
|lnx|,(x>0)
,集合M={x|f[f(x)]=1},则M中元素的个数为(  )

查看答案和解析>>

同步练习册答案