精英家教网 > 高中数学 > 题目详情
3.命题“?x∈Z,x2+x+m<0”的否定是?x∈R,使x2+x+m≥0.

分析 根据特称命题的否定是全称命题进行求解即可.

解答 解:∵命题“?x∈Z,x2+x+m<0”是特称命题
∴否定命题为:?x∈R,使x2+x+m≥0
故答案为:?x∈R,使x2+x+m≥0.

点评 本题主要考查全称命题与特称命题的转化,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\end{array}\right.$,则$\frac{y+2}{x+1}$的最大值为(  )
A.3B.$\frac{1}{3}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在命题“若|m|>|n|,则m2>n2”及该命题的逆命题、否命题、逆否命题中,真命题的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四种说法中,正确的个数有(  )
①命题“?x∈R,均有x2-3x-2≥0”的否定是“?x0∈R,使得x02-3x0-2≤0”;
②若a∥b,且b∥β,则a∥β;
③?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是幂函数,且在(0,+∞)上单调递增;
④任何过点(x1,y1)及(x2,y2)的直线都可以用方程(x2-x1)(y-y1)-(y2-y1)(x-x1)=0表示.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b是实数,则“a>1”是“a>2”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=$\frac{1}{2{S}_{n}}$+bn,设数列{cn}的前n项和Tn,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A,B,C是球O的球面上三点,且$AB=AC=3,BC=3\sqrt{3},D$为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥D-ABC体积的最大值为$\frac{27}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P、Q两点,F2为右焦点,若△PQF2为等边三角形,则椭圆的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数2-3i的虚部为(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

同步练习册答案