| A. | y=|x|(x∈R) | B. | y=-x3(x∈R) | C. | $y={(\frac{1}{2})^x}(x∈R)$ | D. | $y=\frac{1}{x}(x∈R,且x≠0)$ |
分析 根据偶函数、奇函数的定义,减函数的定义,奇函数图象的对称性,以及反比例函数在定义域上的单调性即可判断每个选项的正误,从而找出正确选项.
解答 解:A.y=|x|是偶函数,不是奇函数,∴该选项错误;
B.-(-x)3=-(-x3),∴y=-x3是奇函数;
x增大时,x3增大,-x3减小,即y减小;
∴y=-x3在定义域R上是减函数,∴该选项正确;
C.$y=(\frac{1}{2})^{x}$的图象不关于原点对称,不是奇函数,∴该选项错误;
D.$y=\frac{1}{x}$在定义域上没有单调性,∴该选项错误.
故选:B.
点评 考查奇函数和偶函数的定义,以及减函数的定义,奇函数图象的对称性,反比例函数的单调性,要熟悉指数函数的图象.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 网民态度 | 支持 | 反对 | 无所谓 |
| 人数(单位:人) | 8000 | 6000 | 10 000 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [0,$\frac{1}{2}$]∪(2,+∞) | C. | (-$\frac{1}{2}$,+∞) | D. | [-$\frac{1}{2}$,0]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{3}$,ln2] | B. | (-ln2,-$\frac{1}{3}$ln6) | C. | (-ln2,-$\frac{1}{3}$ln6] | D. | ($\frac{1}{3}$ln6,ln2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com