精英家教网 > 高中数学 > 题目详情

已知等差数列满足:的前n项和为
(1)求
(2)令=(),求数列的前项和

(1)=
(2)==

解析试题分析:(1)设等差数列的公差为d,因为,所以有
,解得
所以==
(2)由(1)知,所以bn===
所以==
考点:等差数列的通项公式、求和公式,裂项相消法。
点评:典型题,涉及求数列的通项公式问题,一般地通过布列方程组,求相关元素。“分组求和法”“裂项相消法”“错位相减法”是高考常考知识内容。本题难度不大。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在数列中,
(1)设,求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足.
(1)求数列的通项公式;
(2)令,数列{bn}的前n项和为Tn,试比较Tn的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

知数列的首项项和为,且
(1)证明:数列是等比数列;
(2)令,求函数在点处的导数,并比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,
(1)试判断数列是否为等差数列;
(2)设满足,求数列的前n项和
(3)若,对任意n ≥2的整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,则(1)当时,求数列的前项和;(2)当时,证明数列是等比数列。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,其中N*.
(Ⅰ)设,求证:数列是等差数列,并求出的通项公式
(Ⅱ)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,首项a 1 =3且2a n+1="S"  n?S n-1 (n≥2).
(1)求证:{}是等差数列,并求公差;
(2)求{a n }的通项公式;
(3)数列{an }中是否存在自然数k0,使得当自然数k≥k 0时使不等式a k>a k+1对任意大于等于k的自然数都成立,若存在求出最小的k值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知数列中的各项均为正数,且满足.记,数列的前项和为,且
(1)证明是等比数列;
(2)求数列的通项公式;
(3)求证:.

查看答案和解析>>

同步练习册答案