精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c在x=-1与x=2处都取得极值.
(Ⅰ)求a,b的值及函数f(x)的单调区间;
(Ⅱ)若对x∈[-2,3],不等式f(x)+
32
c<c2恒成立,求c的取值范围.
分析:(1)求出f′(x)并令其=0得到方程,把x=-1和x=2代入求出a、b即可;
(2)求出函数的最大值为f(-1),要使不等式恒成立,既要证f(-1)+
3
2
c<c2,即可求出c的取值范围.
解答:解:(Ⅰ)f′(x)=3x2+2ax+b,
由题意:
f(-1)=0
f(2)=0
3-2a+b=0
12+4a+b=0

解得
a=-
3
2
b=-6

f(x)=x3-
3
2
x2-6x+c
,f′(x)=3x2-3x-6
令f′(x)<0,解得-1<x<2;
令f′(x)>0,解得x<-1或x>2,
∴f(x)的减区间为(-1,2);增区间为(-∞,-1),(2,+∞).
(Ⅱ)由(Ⅰ)知,f(x)在(-∞,-1)上单调递增;
在(-1,2)上单调递减;在(2,+∞)上单调递增.
∴x∈[-2,3]时,f(x)的最大值即为f(-1)与f(3)中的较大者.f(-1)=
7
2
+c
f(3)=-
9
2
+c

∴当x=-1时,f(x)取得最大值.
要使f(x)+
3
2
c<c2
,只需c2>f(-1)+
3
2
c
,即:2c2>7+5c
解得:c<-1或c>
7
2

∴c的取值范围为(-∞,-1)∪(
7
2
,+∞)
点评:考查学生利用导数求函数极值的能力,利用导数研究函数单调性的能力,以及掌握不等式的证明方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案