精英家教网 > 高中数学 > 题目详情
8.在△ABC中,D是AC边的中点,A=$\frac{π}{3}$,cos∠BDC=-$\frac{2}{\sqrt{7}}$,△ABC的面积为3$\sqrt{3}$,则sin∠ABD=$\frac{3\sqrt{21}}{14}$,BC=6.

分析 过B作BH⊥AC于H,则cos∠BDH=$\frac{DH}{BD}$=$\frac{2\sqrt{7}}{7}$,设DH=2k(k>0),则BD=$\sqrt{7}$k,BH=$\sqrt{3}$k,在Rt△ABH中,由∠A=$\frac{π}{3}$,得AH=k,从而AD=3k,AC=6k,由S△ABC=$\frac{1}{2}×6k×\sqrt{3}k$=3$\sqrt{3}{k}^{2}$=3$\sqrt{3}$,求出BC=6,再由$\frac{BD}{sinA}=\frac{AD}{sin∠ABD}$,能求出sin∠ABD.

解答 解:过B作BH⊥AC于H,则cos∠BDH=$\frac{DH}{BD}$=$\frac{2\sqrt{7}}{7}$,
设DH=2k(k>0),则BD=$\sqrt{7}$k,
∴BH=$\sqrt{B{D}^{2}-D{H}^{2}}$=$\sqrt{3}$k,
在Rt△ABH中,∠A=$\frac{π}{3}$,∴AH=$\frac{BH}{\sqrt{3}}$=k,
∴AD=3k,AC=6k,
又S△ABC=$\frac{1}{2}$×AC×BH=$\frac{1}{2}×6k×\sqrt{3}k$=3$\sqrt{3}{k}^{2}$=3$\sqrt{3}$,
解得k=1,∴BC=6,
在△ABD中,$\frac{BD}{sinA}=\frac{AD}{sin∠ABD}$,
∴$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}=\frac{3}{sin∠ABD}$
解得sin∠ABD=$\frac{3\sqrt{21}}{14}$.
故答案为:$\frac{3\sqrt{21}}{14}$,6.

点评 本题考查三角形的内角的正弦值的求法,考查三角形的边的求法,考查同角三角函数关系式、正弦定理、余弦定理、三角形面积公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.为了降低能源损耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c(单位:万元)与隔热层厚度x(单位:cm)满足关系c(x)=$\frac{k}{2x+5}$(0≤x≤10),若不建隔热层,每年能源消耗为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和
(Ⅰ)求k的值及f(x)的表达式
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设随机变量ξ服从正态分布N(2,4)若P(ξ<a-3)=p(ξ>2a+1),则实数a的值是(  )
A.-4B.$\frac{4}{3}$C.2D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(2,x-3),$\overrightarrow{b}$=(x,2),则“x=-1”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设双曲线的实轴长为2a(a>0),一个焦点为F,虚轴的一个端点为B,如果直线FB恰好与圆x2+y2=a2相切,那么双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知B=$\frac{π}{4}$,cosA-cos2A=0
(1)求角C;  
(2)若b2+c2=a-bc+2,求a,c值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,A,B,C所对应的边分别为a,b,c,且边BC上的高为$\frac{a}{4}$,则$\frac{b}{c}+\frac{c}{b}$的取值范围为[2,$2\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司于2015年底建成了一条生产线,自2016年1月份产品投产上市一年来,该公司的营销状况所反映出的每月获得的利润y(万元)与月份x之间的函数关系为:y=$\left\{\begin{array}{l}{26x-56(1≤x≤5,x∈N*)}\\{210-20x(5<x≤12,x∈N*)}\end{array}\right.$
(Ⅰ)2016年第几个月该公司的月利润最大?最大值是多少万元?
(Ⅱ)若公司前x个月的月平均利润(w=$\frac{前x个月的利润总和}{x}$)达到最大时,公司下个月就应采取改变营销模式,拓宽销售渠道等措施,以保持盈利水平,求w(万元)与x(月)之间的函数关系,并指出这家公司在2016年的第几个月就应采取措施.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在如图所示的茎叶图中,甲、乙两组数据的中位数的和是64.

查看答案和解析>>

同步练习册答案