精英家教网 > 高中数学 > 题目详情
18.已知双曲线$\frac{{x}^{2}}{4}$-y2=1的左、右焦点分别为F1、F2,在其右支上有两点A、B,若△ABF2的周长为10,则△ABF1的周长为(  )
A.12B.16C.18D.14

分析 求出双曲线的a=2,由双曲线的定义可得|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,结合条件,即可得到所求周长.

解答 解:双曲线$\frac{{x}^{2}}{4}$-y2=1的a=2,
△ABF2的周长为10,即为|AB|+|AF2|+|BF2|=10,
由双曲线的定义可得|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,
即有△ABF1的周长为|AB|+|AF1|+|BF1|=|AB|+|AF2|+|BF2|+4a
=10+8=18.
故选;C.

点评 本题考查双曲线的定义、方程和性质,主要考查双曲线的定义的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,等腰梯形ABCD的底边AB在x轴上,顶点A与顶点B关于原点O对称,且底边AB和CD的长分别为6和2$\sqrt{6}$,高为3.
(Ⅰ)求等腰梯形ABCD的外接圆E的方程;
(Ⅱ)若点N的坐标为(5,2),点M在圆E上运动,
求线段MN的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,椭圆长轴端点为点A、B、O为椭圆的中心,F为椭圆的上焦点,且$\overrightarrow{AF}•\overrightarrow{FB}=1,|\overrightarrow{OF}|=1$.
(1)求椭圆的标准方程;
(2)若四边形MPNQ的四个顶点都在椭圆上,对角线PQ,MN互相垂直并且它们的交点恰为点F,求四边形MPNQ面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在长方体ABCD-A1B1C1D1中,AB=4,AD=2,A1A=2,则直线BC1到平面D1AC的距离为(  )
A.$\frac{1}{3}$B.1C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1、F2是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的两焦点,过点F1的直线交椭圆于A、B两点,在△AF1B中,若有两边之和是10,则第三边的长度为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题“?x≤-1,x2>2x”的否定是?x0≤-1,x02≤2x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a=log20.4,b=0.42,c=20.4,则a,b,c的大小关系是(  )
A.a>c>bB.a>b>cC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-2|-|2x-a|(a∈R).
(Ⅰ)当a=2时,解不等式f(x)>0;
(Ⅱ)当x∈(-∞,2)时f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设直线l1的方程为y=$\frac{\sqrt{3}}{3}$x-1,求过点P(1,0),倾斜角是直线l1的倾斜角的2倍的l2直线的方程.

查看答案和解析>>

同步练习册答案