精英家教网 > 高中数学 > 题目详情
19.(文)已知数列{an}的前n项和为Sn=n2+$\frac{1}{2}$n,则数列的通项公式an=$2n-\frac{1}{2}$;
(理)已知数列{an}的前n项和为Sn=$\frac{1}{4}{n^2}+\frac{2}{3}$n+3,则数列的通项公式an=$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.

分析 利用an+1=Sn+1-Sn计算出an(n≥2),进而可得结论.

解答 解:(文)依题意,an+1=Sn+1-Sn=(n+1)2+$\frac{1}{2}$(n+1)-(n2+$\frac{1}{2}$n)=2(n+1)-$\frac{1}{2}$,
又∵a1=1+$\frac{1}{2}$=$\frac{3}{2}$满足上式,
∴an=$2n-\frac{1}{2}$;
(理)依题意,an+1=Sn+1-Sn=$\frac{1}{4}$(n+1)2+$\frac{2}{3}$(n+1)+3-($\frac{1}{4}{n^2}+\frac{2}{3}$n+3)=$\frac{6(n+1)+5}{12}$,
又∵a1=$\frac{1}{4}$+$\frac{2}{3}$+3=$\frac{47}{12}$不满足上式,
∴an=$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.
故答案为:$2n-\frac{1}{2}$,$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.

点评 本题考查数列的通项,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx2+(c-3a-2b)x+d的图象如图所示.
(1)求c,d的值;
(2)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式;
(3)在(2)的条件下,函数y=f(x)与y=$\frac{1}{3}$f′(x)+5x+m的图象有三个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果方程$\frac{x^2}{4-m}-\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,则m的取值范围为$\frac{7}{2}$<m<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.袋中有6个红球、4个白球,从袋中任取4个球,则至少有2个白球的概率是(  )
A.$\frac{23}{42}$B.$\frac{1}{7}$C.$\frac{17}{42}$D.$\frac{5}{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,若3a2=32,3a12=118,则a4+a10=(  )
A.45B.50C.75D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合U={1,2,3,4,5,6},A={1,3},B={2,3,4},则图中阴影部分所表示的集合是(  )
A.{4}B.{2,4}C.{4,5}D.{1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知二项式${(\sqrt{x}-\frac{1}{{\root{3}{x}}})^5}$的展开式中常数项为(  )
A.-10B.6C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}满足:a1+a2+a3+a4=$\frac{15}{8}$,a2•a3=-$\frac{9}{8}$,则$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{4}}$=(  )
A.-2B.-$\frac{5}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,将长$A{A^'}=3\sqrt{3}$,宽AA1=3的矩形沿长的三等分线处折叠成一个三棱柱,如图所示:
(1)求异面直线PQ与AC所成角的余弦值;
(2)求三棱锥A1-APQ的体积.

查看答案和解析>>

同步练习册答案