精英家教网 > 高中数学 > 题目详情
4.数f(x)=a|log2x|+1(a≠0),定义函数F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}\right.$,给出下列命题:①F(x)=|f(x)|;②函数F(x)是偶函数;③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;④当a>0时,函数y=F(x)-2有4个零点.其中正确命题的个数为3 个.

分析 ①F(x)=f(|x|),从而判断;
②易知函数F(x)是偶函数;
③由对数函数的单调性及绝对值可判断F(m)-F(n)=-alog2m+1-(-alog2n+1)=a(log2n-log2m)<0;
④由函数的零点与方程的根的关系可得|x|=${2}^{\frac{1}{a}}$或|x|=${2}^{-\frac{1}{a}}$;从而判断出函数y=F(x)-2有4个零点.

解答 解:①F(x)=f(|x|),故F(x)=|f(x)|不正确;
②∵F(x)=f(|x|),∴F(-x)=F(x);
∴函数F(x)是偶函数;
③当a<0时,若0<m<n<1,
则F(m)-F(n)=-alog2m+1-(-alog2n+1)
=a(log2n-log2m)<0;
④当a>0时,F(x)=2可化为f(|x|)=2,
即a|log2|x||+1=2,
即|log2|x||=$\frac{1}{a}$;
故|x|=${2}^{\frac{1}{a}}$或|x|=${2}^{-\frac{1}{a}}$;
故函数y=F(x)-2有4个零点;
②③④正确;
故答案为:3 个.

点评 本题考查了绝对值函数的应用及对数函数的性质的应用,同时考查了函数的零点与方程的根的关系应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,满足$\frac{sinB}{sinA}=\frac{1-cosB}{cosA}$.若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,平面四边形OACB面积的最大值是$\frac{8+5\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x2-1(x≤0)的反函数是(  )
A.y=$\sqrt{x+1}$(x≥-1)B.y=±$\sqrt{x+1}$(x≥-1)C.y=-$\sqrt{x+1}$(x≥-1)D.y=-$\sqrt{-x+1}$(x≤1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为2,求函数f(x)的图象在(1,f(1))的切线方程;
(2)若函数g(x)=$\frac{2}{x}$+f(x)在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求极限:$\underset{lim}{x→∞}$x[ln(x+2)-lnx].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解方程组:$\left\{\begin{array}{l}{3(x+y)-4(x-y)=4}\\{\frac{x+y}{2}+\frac{x-y}{6}=1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a=(t,0,-1),\overrightarrow b=(2,5,{t^2})$,若$\overrightarrow a⊥\overrightarrow b$,则t=0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在计算机语言中有一种函数y=int(x)叫做取整函数(也叫高斯函数),它表示不超过x的最大整数,如int(0.9)=0,int(3.14)=3,已知$\frac{1}{7}$=0.$\stackrel{•}{1}$$\stackrel{•}{4}$$\stackrel{•}{2}$$\stackrel{•}{8}$$\stackrel{•}{5}$$\stackrel{•}{7}$,令an=int($\frac{1{0}^{n}}{7}$),b1=a1,令当n>1时,bn=an-10an-1(n∈N*),则当n>1时,则b2014=(  )
A.2009B.8C.2010D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图为函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象.
(1)写出函数f(x)的解析式和单调增区间;
(2)若$α∈(-\frac{π}{4},\frac{π}{4})$,$β∈(\frac{π}{4},\frac{3π}{4})$,且f($\frac{α}{2}$)=$\frac{\sqrt{26}}{13}$,f($\frac{β}{2}$-$\frac{π}{4}$)=$\frac{4\sqrt{13}}{13}$,求α+β的值.

查看答案和解析>>

同步练习册答案