精英家教网 > 高中数学 > 题目详情

【题目】集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的最大值为

【答案】2
【解析】解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,
∴1<a≤2;
当a=1时,易得A=R,此时A∪B=R;
当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),
若A∪B=R,则a﹣1≤a,显然成立,
∴a<1;
综上,a的取值范围是(﹣∞,2].
则a的最大值为2,
所以答案是.2.
【考点精析】解答此题的关键在于理解集合的并集运算的相关知识,掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

如图,甲向如图1所示的平面区域内随机掷点、乙向如图2所示的平面区域内随机掷点,假设点落在区域内任意一点的可能性相同.已知图1中小圆的半径是大圆半径的二分之一,图2中小正方形的顶点为大正方形各边的中点.

(1)甲、乙各掷点一次,求至少有一人掷点落在阴影区域的概率;

(2)甲、乙各掷点两次,记点落在阴影区域的次数为,求的分布列和数学期望.

12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若复数z1对应的点M(m,n)在曲线 上运动,求复数z所对应的点P(x,y)的轨迹方程;
(2)将(1)中的轨迹上每一点按向量 方向平移 个单位,得到新的轨迹C,求C的轨迹方程;
(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,斜率为的直线与椭圆交于 两点,点在直线的左上方.若,且直线 分别与轴交于 点,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数
(1)用定义证明:f(x)为R上的奇函数;
(2)用定义证明:f(x)在R上为减函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:
①h(x)的图象关于原点对称;
②h(x)为偶函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为:②③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于的不等式的解集为其中

(1)求的值;

(2)令,若函数存在极值点,求实数的取值范围,并求出极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kax(k为常数,a>0且a≠1)的图象过点A(0,1)和点B(2,16).
(1)求函数的解析式;
(2)g(x)=b+ 是奇函数,求常数b的值;
(3)对任意的x1 , x2∈R且x1≠x2 , 试比较 的大小.

查看答案和解析>>

同步练习册答案