精英家教网 > 高中数学 > 题目详情
15.如图,AB是圆的直径,ABCD是圆内接四边形,BD∥CE,∠AEC=40°,则∠BCD=(  )
A.160°B.150°C.140°D.130°

分析 利用圆的直径的性质及圆内接四边形性质,即可得出结论.

解答 解:∵BD∥CE,∠AEC=40°,
∴∠DBA=40°,
∵AB是圆的直径,
∴∠A=90°-40°=50°,
∴∠BCD=130°.
故选:D.

点评 本题考查圆的直径的性质及圆内接四边形性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是 (  )
A.$2\sqrt{2}$B.2C.3D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.a,b,c表示三角形ABC的三边,$|\begin{array}{l}{a}&{b}&{c}\\{c}&{a}&{b}\\{b}&{c}&{a}\end{array}|$=0,则三角形ABC一定不是(  )
A.等腰三角形B.锐角三角形C.等边三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某商场销售一种商品,已知该商品每件成本为6元,若每件售价为x元(x>6),则年销售量W(万件)与每件售价x(元)之间满足关系式:W=kx2+21x+18,且当每件售价为10元时,年销售量为28万件.
(Ⅰ)试确定k的值,并求该商场的年利润f(x)关于售价x的函数关系式;
(Ⅱ)试确定售价x的值,使年利润f(x)最大,并求出最大年利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l经过点P(-1,0),且倾斜角为α,以原点O为极点,以x轴的非负半轴为极轴,取与直角坐标系xOy相同的长度单位,建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(1)若直线l与曲线C有公共点,求α的取值范围;
(2)求直线l1:x-$\sqrt{3}$y=0被曲线C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ax+$\frac{a-1}{x}$-lnx.
(Ⅰ)若a=3,求f(x)的最小值;
(Ⅱ)若当x≥1时,f(x)≥2a-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中的a1,a4031是函数f(x)=x3-12x2+6x的极值点,则log2a2016=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的中心O为圆心,且以其短轴长为直径的圆可称为该椭圆的“伴随圆”,记为C1.已知椭圆C的右焦点为($\frac{{\sqrt{3}}}{2}$,0),且过点($\frac{1}{2}$,$\frac{{\sqrt{3}}}{4}$).
(I)求椭圆C及其“伴随圆”C1的方程;
(Ⅱ)过点M(t,0)作C1的切线l交椭圆C于A,B两点,求△AOB(O为坐标原点)的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.θ=$\frac{π}{4}$(ρ≤0)表示的图形是(  )
A.一条射线B.一条直线C.一条线段D.

查看答案和解析>>

同步练习册答案