精英家教网 > 高中数学 > 题目详情
10.在直角坐标系xOy中,直线l经过点P(-1,0),且倾斜角为α,以原点O为极点,以x轴的非负半轴为极轴,取与直角坐标系xOy相同的长度单位,建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(1)若直线l与曲线C有公共点,求α的取值范围;
(2)求直线l1:x-$\sqrt{3}$y=0被曲线C所截得的弦长.

分析 (1)由直线l经过点P(-1,0),且倾斜角为α,利用点斜式可得直线方程.曲线C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐标方程.由直线l与曲线C有公共点,可得$\frac{|2tanα|}{\sqrt{1+ta{n}^{2}α}}$≤1,解出即可得出.
(2)圆心到直线的距离d=$\frac{1}{2}$,可得弦长=2$\sqrt{{r}^{2}-{d}^{2}}$.

解答 解:(1)由直线l经过点P(-1,0),且倾斜角为α,可得直线方程:y=(x+1)tanα,
曲线C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2-2x=0,可得(x-1)2+y2=1,
∵直线l与曲线C有公共点,∴$\frac{|2tanα|}{\sqrt{1+ta{n}^{2}α}}$≤1,可得:tan2α≤$\frac{1}{3}$,∴$-\frac{\sqrt{3}}{3}$≤tanα≤$\frac{\sqrt{3}}{3}$,
∵α∈[0,π),∴α∈$[0,\frac{π}{6}]$∪$[\frac{5π}{6},π)$.
(2)圆心到直线的距离d=$\frac{1}{2}$,
∴直线l1:x-$\sqrt{3}$y=0被曲线C所截得的弦长L=2$\sqrt{1-(\frac{1}{2})^{2}}$=$\sqrt{3}$.

点评 本题考查了曲线的相交弦长、极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.动直线y=a与圆x2+y2=1及直线2x+y-4=0分别交于P、Q两点,则|PQ|的最小值为2-$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b∈R,不等式$|\begin{array}{l}{x^2}&{1}&{x}\\{b}&{-a}&{1}\\{x}&{a}&{-1}\end{array}|$>0的解为1<x<2,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为100元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,以原点O为极点、x轴的正半轴为极轴建立极坐标系.已知点P($\sqrt{2}$,$\frac{7π}{4}$)在直线l:ρcosθ+2ρcosθ+a=0(a∈R)上.
(Ⅰ)求直线l的直角坐标方程.
(Ⅱ)若点A在直线l上,点B在曲线C:$\left\{\begin{array}{l}{x=t}\\{y=\frac{1}{4}{t}^{2}}\end{array}\right.$(t为参数)上,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,AB是圆的直径,ABCD是圆内接四边形,BD∥CE,∠AEC=40°,则∠BCD=(  )
A.160°B.150°C.140°D.130°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2$\frac{2x-1}{2x+1}$,g(x)=log2$\frac{2x+1}{8x+12}$.
(1)求证:函数y=f(x)的图象关于坐标原点对称;
(2)求证:f(x+1)-2=g(x),并指出函数y=g(x)图象对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.$(α为参数),若以原点为极点,x轴非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(sinθ-cosθ)=4,
(1)已知点M的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),写出点M关于直线l对称点M′的直角坐标;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正三棱锥P-ABC的外接球的半径为2,且球心在点A,B,C所确定的平面上,则该正三棱锥的表面积是$3(\sqrt{15}+\sqrt{3})$.

查看答案和解析>>

同步练习册答案