精英家教网 > 高中数学 > 题目详情
1.函数f(x)=log3x+x-5的一个零点所在的区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 确定函数的定义域为(0,+∞)与单调性,再利用零点存在定理,即可得到结论.

解答 解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,
∵f(4)=log34+4-5>0,f(3)=log33+3-5<0,
∴函数f(x)=log3x+x-5的零点一定在区间(3,4),
故选:D.

点评 本题考查函数的单调性,考查零点存在定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知x>0,y>0且lg(x2+y2-4)≤0,则|2x+y-10|的取值范围是[5,8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
分组频数
[1.30,1.34)4
[1.34,1.38)22
[1.38,1.42)40
[1.42,1.46)22
[1.46,1.50)10
[1.50,1.54)2
合计100
(1)画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的频率及纤度小于1.40的频率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]•$\sqrt{2si{n}^{2}80°}$的值为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,点(x,y)在阴影部分所表示的平面区域上,则z=y-x的最大值为(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设△ABC的内角A,B,C所对的边分别为a,b,c,若acosB+bcosA=csinC,则△ABC的形状为(  )
A.锐角三角形B.等腰直角三角形C.钝角三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:点M(1,3)不在圆(x+m)2+(y-m)2=16的内部,
命题q:“曲线${C_1}:\frac{x^2}{m^2}+\frac{y^2}{2m+8}=1$表示焦点在x轴上的椭圆”,
命题s:“曲线${C_2}:\frac{x^2}{m-t}+\frac{y^2}{m-t-1}=1$表示双曲线”.
(1)若“p且q”是真命题,求m的取值范围;
(2)若?s是?q的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,$f′(x)+\frac{f(x)}{x}$>0,若a=f(1),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a,b,c的大小关系正确的是(  )
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在R上的偶函数f(x),当x∈[0,+∞)时,f(x)=ex
(1)当x∈(-∞,0)时,求过原点与函数f(x)图象相切的直线的方程;
(2)求最大的整数m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤ex.

查看答案和解析>>

同步练习册答案