精英家教网 > 高中数学 > 题目详情
10.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,$f′(x)+\frac{f(x)}{x}$>0,若a=f(1),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a,b,c的大小关系正确的是(  )
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

分析 根据a,b,c的表示形式构造函数g(x)=xf(x),根据条件可说明x>0时,g′(x)>0,这便得到g(x)在(0,+∞)上单调递增.而由f(x)为奇函数便可得到b=2f(2),c=(ln2)f(ln2),而容易判断ln2<1<2,从而得到g(ln2)<g(1)<g(2),这样便可得出a,b,c的大小关系.

解答 解:设g(x)=xf(x),$g′(x)=f(x)+xf′(x)=x[f′(x)+\frac{f(x)}{x}]$;
∵x≠0时,$f′(x)+\frac{f(x)}{x}>0$;
∴x>0时,g′(x)>0;
∴g(x)在(0,+∞)上单调递增;
∵f(x)为奇函数;
∴b=-2f(-2)=2f(2),$c=(ln\frac{1}{2})f(ln\frac{1}{2})=(-ln2)f(-ln2)=(ln2)f(ln2)$;
又a=f(1)=1f(1);
∵ln2<1<2,g(x)在(0,+∞)上单调递增;
∴g(ln2)<g(1)<g(2);
即(ln2)f(ln2)<1f(1)<2f(2);
∴c<a<b.
故选:D.

点评 考查构造函数解决问题的方法,会求积的导数,根据导数符号判断函数单调性的方法,以及奇函数的定义,增函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的公差为-1,前n项和为Sn,且a3+a8+a11=-4.
(Ⅰ)求数列{an}的通项公式an与前n项和Sn
(Ⅱ)从数列{an}的前五项中抽取三项按原来顺序恰为等比数列{bn}的前三项,记数列{anbn}的前n项和为 Tn,若存在m∈N*,使得对任意n∈N*,总有Sn<Tm+λ成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=log3x+x-5的一个零点所在的区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,ABCDEF是边长为2的正六边形,则下列命题成立的是(  )
A.$\overrightarrow{CA}$+$\overrightarrow{CE}$=$\overrightarrow{CF}$B.$\overrightarrow{CE}$-$\overrightarrow{AF}$=$\overrightarrow{AB}$C.$\overrightarrow{BD}$•$\overrightarrow{FD}$=0D.$\overrightarrow{CD}$•($\overrightarrow{AB}$-$\overrightarrow{AE}$-$\overrightarrow{EF}$)=-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列几个命题:
①已知函数y=x2+2ax+a2-a(x∈R),若y可以取到负值,则实数a的取值范围是(0,+∞);
②函数y=|x-1|-|x+1|既不是偶函数,也不是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x-1)的值域为[-1,3];
④设函数y=f(x)(x∈R)满足:f(1-x)=f(1+x),则函数y=f(x)的图象关于直线x=1对称;
其中正确的有①④.(写出所有你认为正确的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.集合A={0,2,a},B={1,a},若A∪B={0,1,2,4},则a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(x+1)<0的解集是(  )
A.[0,2)B.(-2,2)C.(-1,3)D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某班40名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(学生成绩都在[50,100]之间)
(1)求频率分布直方图中a的值;
(2)估算该班级的平均分;
(3)若规定成绩达到80分及以上为优秀等级,从该班级40名学生中任选一人,求此人成绩为优秀等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案