| A. | $\overrightarrow{CA}$+$\overrightarrow{CE}$=$\overrightarrow{CF}$ | B. | $\overrightarrow{CE}$-$\overrightarrow{AF}$=$\overrightarrow{AB}$ | C. | $\overrightarrow{BD}$•$\overrightarrow{FD}$=0 | D. | $\overrightarrow{CD}$•($\overrightarrow{AB}$-$\overrightarrow{AE}$-$\overrightarrow{EF}$)=-6 |
分析 利用正六边形的性质和向量的有关知识逐个分析选项判断.
解答 解:四边形CAFE不是平行四边形,∴$\overrightarrow{CA}+\overrightarrow{CE}$≠$\overrightarrow{CF}$,故A错误;
$\overrightarrow{CE}-\overrightarrow{AF}$=$\overrightarrow{CE}-\overrightarrow{CD}$=$\overrightarrow{DE}$=-$\overrightarrow{AB}$,故B错;
∵△BDF是等边三角形,∴BD与FD不垂直,∴$\overrightarrow{BD}•\overrightarrow{FD}$≠0,故C错误;
连结FB,则BF=2$\sqrt{3}$,∠AFB=30°,∴$\overrightarrow{CD}•$($\overrightarrow{AB}-\overrightarrow{AE}-\overrightarrow{EF}$)=$\overrightarrow{CD}•$$\overrightarrow{FB}$=$\overrightarrow{AF}•\overrightarrow{FB}$=2$\sqrt{3}$×2×cos150°=-6.故D正确.
故选D.
点评 本题考查了平面向量的数量积运算,向量的线性运算的几何意义,正六边形的性质,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 等腰直角三角形 | C. | 钝角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<c<b | B. | b<c<a | C. | a<b<c | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (9,49) | B. | (13,49) | C. | (9,25) | D. | (3,7) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com