精英家教网 > 高中数学 > 题目详情
5.下列几个命题:
①已知函数y=x2+2ax+a2-a(x∈R),若y可以取到负值,则实数a的取值范围是(0,+∞);
②函数y=|x-1|-|x+1|既不是偶函数,也不是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x-1)的值域为[-1,3];
④设函数y=f(x)(x∈R)满足:f(1-x)=f(1+x),则函数y=f(x)的图象关于直线x=1对称;
其中正确的有①④.(写出所有你认为正确的编号)

分析 ①y可以取到负值,则△=4a2-4(a2-a)>0,可求实数a的取值范围;
②利用奇函数的定义进行验证;
③函数f(x-1)的图象是由函数f(x)的图象向右平移1个单位得到的;
④设函数y=f(x)(x∈R)满足:f(1-x)=f(1+x),则函数y=f(x)的图象关于直线x=1对称.

解答 解:①已知函数y=x2+2ax+a2-a(x∈R),若y可以取到负值,则△=4a2-4(a2-a)>0,∴a>0,∴实数a的取值范围是(0,+∞),正确;
②f(-x)=|-x-1|-|-x+1|=|x+1|-|x-1|=-f(x),是奇函数,不正确;
③函数f(x)的值域是[-2,2],则函数f(x-1)的值域为[-2,2],不正确;
④设函数y=f(x)(x∈R)满足:f(1-x)=f(1+x),则函数y=f(x)的图象关于直线x=1对称,正确.
故答案为:①④.

点评 本题考查命题的真假判断,考查函数值,值域,考查函数的奇偶性、对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,且对任意n∈N+,都有Sn=2an-2.
(I)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}+{3}^{n}}$,数列{bn}的前n项和为Tn.证明:$\frac{1}{5}$≤Tn≤$\frac{\sqrt{6}+1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,点(x,y)在阴影部分所表示的平面区域上,则z=y-x的最大值为(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:点M(1,3)不在圆(x+m)2+(y-m)2=16的内部,
命题q:“曲线${C_1}:\frac{x^2}{m^2}+\frac{y^2}{2m+8}=1$表示焦点在x轴上的椭圆”,
命题s:“曲线${C_2}:\frac{x^2}{m-t}+\frac{y^2}{m-t-1}=1$表示双曲线”.
(1)若“p且q”是真命题,求m的取值范围;
(2)若?s是?q的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-x+1,g(x)=ex(e为自然对数的底数)
(Ⅰ)设F(x)=f(x)-kg(x)(k∈R),当k取何值时,函数F(x)恰有两个零点?
(Ⅱ)记g(x)的反函数为g-1(x),证明:对任意x∈(0,+∞),都有g(-x)-g-1(x)<$\frac{2}{ex}$;
(Ⅲ)数列{an}满足a1=$\frac{f(2)}{2}$,an+1=f(an)(n∈N*),求S=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{2015}}$的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,$f′(x)+\frac{f(x)}{x}$>0,若a=f(1),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a,b,c的大小关系正确的是(  )
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等差数列{an}中,若共有n项,且前四项之和为21,后四项之和为67,前n项和Sn=286,则n=26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,tmin后物体的温度θ℃可由公式θ=θ0+(θ10)e-kt求得,这里k是一个随着物体与空气的接触状况而定的正的常数.现有62℃的物体,放在15℃的空气中冷却,1min以后物体的温度是52℃.求上式中k的值(精确到0.01),然后计算开始冷却后多长时间物体的温度是42℃,32℃.物体会不会冷却到12℃?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=$\sqrt{6}$.O为AC与BD的交点,E为棱PB上一点
(1)证明:平面EAC⊥平面PBD;
(2)若三棱锥P-EAD的体积为$\frac{\sqrt{2}}{2}$,求证:PD∥平面EAC.

查看答案和解析>>

同步练习册答案