【题目】经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+ a2﹣a(a>0):月需求量为y2吨,y2=﹣ x2﹣ x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知a= ,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.
【答案】
(1)解:当a= ,x=7时,y1= ×7+ ×( )2﹣ =1+ ﹣ = ,
y2=﹣ ×( )2﹣ × +1= ,
∴y1>y2,
∴该月销售额为7× ×104≈50313(元)
(2)解:令f(x)=y1﹣y2= x2+( +a)x﹣a﹣1,
则f(x)在[6,14)上有零点,
∵a>0,∴f(0)=﹣a﹣1<0,又f(x)的图象开口向上,
∴f(x)在[6,14)上只有1个零点,
∴ ,即 ,
解得:0<a≤
【解析】(1)计算y1 , y2 , 比较大小确定销售量,再计算销售额;(2)令f(x)=y1﹣y2 , 则f(x)在[6,14)上有零点,根据零点的存在性定理列不等式组解出a的范围.
科目:高中数学 来源: 题型:
【题目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]时,f(x)= ,a=f( ),b=f( ),c=f( ),则( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mln(x+1)﹣nx在点(1,f(1))处的切线与y轴垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的单调区间;
(Ⅱ)设g(x)=﹣x2+2x,确定非负实数a的取值范围,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 =1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com