精英家教网 > 高中数学 > 题目详情
已知a=log23,b=log
1
2
5
c=(
1
2
)0.3
则(  )
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c
考点:对数值大小的比较
专题:函数的性质及应用
分析:利用对数函数的单调性即可得出.
解答: 解:∵a=log23>1,b=log
1
2
5
<0,0<c=(
1
2
)0.3
<1,
∴b<c<a.
故选:C.
点评:本题考查了对数函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,若a3a6=8,a2a4a5=32,则a2的值为(  )
A、2B、3C、4D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1
2x+1

(1)判断函数f(x)的奇偶性,并证明.
(2)求函数f(x)的单调性及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
1
2x-3
的定义域为集合M,函数g(x)=log3(x-3)的定义域为集合N.求:
(Ⅰ)集合M,N;       
(Ⅱ) 集合M∩N,M∪N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-4x-5>0},B={x|a≤x<a+4},若A?B.
(1)求∁RA值.
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2},Q={1,2,3},则P+Q=
 
.(用例举法表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若{1,a,
b
a
}={0,a2,a+b},则a2015+b2014的值为(  )
A、1或-1B、0C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=25π,则圆心角30°所对的弧长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知t>0,设函数f(x)=x3-
3(t+1)
2
x2
+3tx+1.
(Ⅰ)若f(x)在(0,2)上无极值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最大值,求t的取值范围;
(Ⅲ)若f(x)≤xex-m+2(e为自然对数的底数)对任意x∈[0,+∞)恒成立时m的最大值为1,求t的取
值范围.

查看答案和解析>>

同步练习册答案