精英家教网 > 高中数学 > 题目详情

已知等比数列{an}的第5项是二项式数学公式展开式的常数项,则a3a7=________.


分析:在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,即得a5的值.再根据等比数列的性质求得a3a7 的值.
解答:二项式展开式的通项公式为 Tr+1=•x-r=
令6-3r=0,r=2,故展开式的常数项为 T3==
由题意可得 等比数列{an}的第5项 a5=
∴a3a7==
故答案为
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数.等比数列的性质应用,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案