精英家教网 > 高中数学 > 题目详情
12.直线l方程为(3m+2)x+(2-m)y+8=0,则直线L恒过点(-1,-3).

分析 直线l方程(3m+2)x+(2-m)y+8=0化为:m(3x-y)+(2x+2y+8)=0,可得$\left\{\begin{array}{l}{3x-y=0}\\{2x+2y+8=0}\end{array}\right.$,求解即可得到直线l1恒过点(-1,-3).

解答 解:直线l方程(3m+2)x+(2-m)y+8=0化为:m(3x-y)+(2x+2y+8)=0,
可得$\left\{\begin{array}{l}{3x-y=0}\\{2x+2y+8=0}\end{array}\right.$,解得x=-1,y=-3.
则直线l1恒过点(-1,-3).
故答案为:(-1,-3).

点评 本题考查直线恒通过定点,考查学生的计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.用数字0,1,2,3,4,5组成没有重复数字的四位数.
(Ⅰ)可以组成多少个不同的四位数?
(Ⅱ)若四位数的十位数字比个位数字和百位数字都大,则这样的四位数有多少个?
(Ⅲ)将(I)中的四位数按从小到大的顺序排成一数列,问第85项是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.棱锥P-ABC的四个顶点均在同一个球面上,其中PA⊥平面ABC,△ABC是正三角形,PA=2BC=4,则该球的表面积为$\frac{112}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某鞋店随机抽取了一年内100天的日销售量(单位:双),结果统计如表:
日销售量[0,100][100,200][200,300][300,400]
日销售量等级优秀
天数20452015
(1)若本次抽取的样本数据有30天是夏季,其中有8天为销售量等级优秀,根据提供的统计数据,完成下面的2×2列联表,并判断是否有95%有把握认为“该鞋店日销售等级为优秀与季节有关”?
非优秀优秀总计
夏季
非夏季
总计100
(2)已知该鞋店每人固定成本为680元,每双鞋销售利润为6元,试估计该鞋店一年(365天)的平均利润.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.10.050.0250.010.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知球O是某几何体的外接球,而该几何体是由一个侧棱长为2$\sqrt{5}$的正四棱锥S-ABCD与一个高为6的正四棱柱ABCD-A1B1C1D1拼接而成,则球O的表面积为(  )
A.$\frac{100π}{3}$B.64πC.100πD.$\frac{500π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若直线x-y+a=0与圆(x-a)2+y2=2无公共点,则实数a的取值范围是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是(  )
A.i>5B.i≤4C.i>4D.i≤5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,则复数z=(1+2i)(2-i)的虚部为(  )
A.-3B.-3iC.3D.3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{{\begin{array}{l}{\sqrt{x}}&{(x>0)}\\{{{(x+\frac{1}{2})}^4}}&{(x<0)}\end{array}}$,则f(f(-1))=(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.4

查看答案和解析>>

同步练习册答案