分析 由题意把A、B、C、P扩展为三棱柱如图,求出上下底面中心连线的中点与A的距离为球的半径,然后求出球的表面积.
解答
解:由题意画出几何体的图形如图,
把A、B、C、P扩展为三棱柱,
上下底面中心连线的中点与A的距离为球的半径,
PA=2BC=4,OE=2,△ABC是正三角形,∴AB=2,
∴AE=$\frac{4\sqrt{3}}{3}$.
AO=$\sqrt{(\frac{4\sqrt{3}}{3})^{2}+{2}^{2}}$=$\sqrt{\frac{28}{3}}$.
所求球的表面积为:4π($\sqrt{\frac{28}{3}}$)2=$\frac{112}{3}$π.
故答案为:$\frac{112}{3}$π.
点评 本题考查球的内接体与球的关系,考查空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{14}$ | B. | $\sqrt{14}$ | C. | $\sqrt{26}$ | D. | -$\sqrt{26}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 赞成禁放 | 不赞成禁放 | 合计 | |
| 老年人 | 60 | 140 | 200 |
| 中青年人 | 80 | 120 | 200 |
| 合计 | 140 | 260 | 400 |
| P(k2>k0) | 0.050 | 0.025 | 0.010 |
| k0 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com