精英家教网 > 高中数学 > 题目详情
11.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA-$\sqrt{3}$acosB=0,且a,b,c成等比数列,则$\frac{a+c}{b}$的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.4

分析 由结合整理定理代入即可求得tanB=$\sqrt{3}$,求得B,由等比中项可知,b2=ac,根据余弦定理代入即可求得4b2=(a+c)2,即可$\frac{a+c}{b}$的值.

解答 解:由正弦定理可知:$\frac{a}{sinA}=\frac{b}{sinB}$=2R,
∴a=2RsinA,b=2RsinB,
∴bsinA-$\sqrt{3}$acosB=2RsinBsinA-2$\sqrt{3}$RsinAcosB=0,
∵sinA≠0,
∴tanB=$\sqrt{3}$,
∵B∈(0,π),
B=$\frac{π}{3}$,
由a,b,c成等比数列,b2=ac,
∴b2=a2+c2-2accosB=a2+c2-ac,
∴4b2=(a+c)2
$\frac{a+c}{b}$=2,
故答案选:2.

点评 本题考查正弦定理和余弦定理在解三角形的应用,考查灵活变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知Z=1+i,
(1)设ω=Z2+3$\overline Z$-4,求|ω|;
(2)若$\frac{{{Z^2}+aZ+b}}{{{Z^2}-Z+1}}$=1+i,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知底面为菱形的四棱锥P-ABCD中,△ABC是边长为2的正三角形,AP=BP=$\frac{\sqrt{2}}{2}$,PC=$\sqrt{2}$且N为线段AC的中点,M为侧棱PB的中点,O为线段AB的中点,
(1)求证:NM∥平面PAD;
(2)求证:直线PO⊥平面ABCD;
(3)在线段BC上是否存在一点K,使得AK⊥PD?若存在求出点K的具体位置并证明,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.点(1,0)到直线x+y+1=0的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,在[-1,0]上单调递减的是(  )
A.y=cosxB.y=-|x-1|C.y=log${\;}_{\frac{1}{2}}}$$\frac{2-x}{2+x}$D.y=ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,与点(3,-$\frac{π}{3}$)关于极轴所在直线对称的点的极坐标是(  )
A.(3,$\frac{2π}{3}$)B.(3,$\frac{π}{3}$)C.(3,$\frac{4π}{3}$)D.(3,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知圆C:$\left\{\begin{array}{l}{x=5cosθ-1}\\{y=5sinθ+2}\end{array}\right.$(θ为参数)和直线l:3x+4y-10=0,则直线l与圆C相交所得的弦长等于4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.把函数f(x)=3x2+2(a-1)x+a2,x∈[-1,1]的最小值记为g(a).
(1)写出g(a)的解析式;
(2)若f(x)的最小值为13,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC的三个内角分别记为A,B,C,若tanAtanB=tanA+tanB+1,则cosC的值是(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案