精英家教网 > 高中数学 > 题目详情
1.已知Z=1+i,
(1)设ω=Z2+3$\overline Z$-4,求|ω|;
(2)若$\frac{{{Z^2}+aZ+b}}{{{Z^2}-Z+1}}$=1+i,求实数a,b的值.

分析 (1)根据复数的运算法则求出ω,在求其模即可,
(2)根据复数代数形式的乘除运算和复数相等的充要条件计算即可.

解答 解:(1)设ω=Z2+3$\overline Z$-4=(1+i)2+3(1-i)-4=2i+3-3i-4=-1-i,
则|ω|=$\sqrt{(-1)^{2}+(-1)^{2}}$=$\sqrt{2}$
(2)由$\frac{{{Z^2}+aZ+b}}{{{Z^2}-Z+1}}$=1+i,
则$\frac{(1+i)^{2}+a(1+i)+b}{(1+i)^{2}-(1+i)+1}$=1+i,
即$\frac{a+b+(2+a)i}{i}$=1+i,
即a+b+(2+a)i=i-1,
故$\left\{\begin{array}{l}{a+b=-1}\\{2+a=1}\end{array}\right.$,
解得a=-1,b=0

点评 本题考查复数代数形式的乘除运算和复数相等的充要条件的灵活运用,解题时要认真审题,仔细解答,注意新定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a∈R,则“a<1”是“a2<a”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,x轴在地平面上,y轴垂直于地面,x轴、y轴上的单位长度都为1km,某炮位于坐标原点处,炮弹发射后,其路径为抛物线y=kx-$\frac{1}{20}(1+{k^2}){x^2}$的一部分,其中k与炮弹的发射角有关且k>0.
(1)当k=1时,求炮弹的射程;
(2)对任意正数k,求炮弹能击中的飞行物的高度h的取值范围;
(3)设一飞行物(忽略大小)的高度为4km,试求它的横坐标a不超过多少km时,炮弹可以击中它.(答案精确到0.1,$\sqrt{5}$取2.236)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.∫${\;}_{0}^{1}$(e2+2x)dx=e2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算积分∫1e$\frac{1}{x}$dx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若正数a,b满足a+b=10,则$\sqrt{a+2}$+$\sqrt{b+3}$的最大值为$\sqrt{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=(6x-$\frac{3}{2}$)2tan(4x-1)+x+$\frac{3}{4}$,f($\frac{1}{2n}$)+f($\frac{1}{n}$)+f($\frac{3}{2n}$)+…+f($\frac{n-1}{2n}$)=(  )
A.nB.n-1C.$\frac{n}{2}$D.$\frac{n-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x5+ax-8,且f(-2)=10,则f(2)=-26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA-$\sqrt{3}$acosB=0,且a,b,c成等比数列,则$\frac{a+c}{b}$的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.4

查看答案和解析>>

同步练习册答案