分析 对无理数可以先求平方,再利用均值定理求出最值,最后得出原表达式的最大值.
解答 解:正数a,b满足a+b=10,
令y=$\sqrt{a+2}$+$\sqrt{b+3}$,
则y2=a+2+b+3+2$\sqrt{(a+2)(b+3)}$,
∵a+b=10,
∴15=a+2+b+3≥2$\sqrt{(a+2)(b+3)}$(当a+2=b+3时等号成立),
∴y2≤30,
∴$\sqrt{a+2}$+$\sqrt{b+3}$的最大值为$\sqrt{30}$.
故答案为:$\sqrt{30}$.
点评 考查了均值定理的应用,难点是对a+2+b+3≥2$\sqrt{(a+2)(b+3)}$的配凑.
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | $\frac{64}{3}$ | C. | 6+2$\sqrt{5}$+2$\sqrt{2}$ | D. | 24+8$\sqrt{5}$+8$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{4}$,$\frac{3}{2}$] | B. | [$\frac{1}{2}$,$\frac{3}{2}$] | C. | [1,$\frac{3}{2}$] | D. | [$\frac{1}{2}$,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,$\frac{2π}{3}$) | B. | (3,$\frac{π}{3}$) | C. | (3,$\frac{4π}{3}$) | D. | (3,$\frac{5π}{6}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com