精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
)(x∈R)

(1)求函数f(x)的最小正周期;
(2)求使函数f(x)取得最大值的x集合;
(3)若θ∈(0,
π
2
)
,且f(θ)=
5
3
,求cos4θ的值.
分析:(1)利用二倍角的三角函数公式结合辅助角公式,整理得f(x)=2sin(2x-
π
3
)+1,结合三角函数的周期公式即可得到
f(x)的最小正周期;
(2)根据正弦函数的图象与性质,解方程2x-
π
3
=
π
2
+2kπ(k∈Z),即可得到函数f(x)取得最大值的x集合;
(3)代入计算,得sin(2θ-
π
3
)=
1
3
,结合θ∈(0,
π
2
)
得2θ-
π
3
∈(-
π
3
3
),从而得到cos(2θ-
π
3
)=
2
2
3
.再利用配角,算出cos2θ=cos[(2θ-
π
3
)+
π
3
]=
2
2
-
3
6
,最后结合二倍角余弦的公式即可得到cos4θ的值.
解答:解:(1)∵sin2(x-
π
12
)=
1
2
[1-cos2(x-
π
12
)]=
1
2
-
1
2
cos(2x-
π
6

∴f(x)=
3
sin(2x-
π
6
)+[1-cos(2x-
π
6
)]
=2[sin(2x-
π
6
)cos
π
6
-cos(2x-
π
6
)sin
π
6
]+1
=2sin(2x-
π
3
)+1
由此可得函数f(x)的最小正周期T=
2

(2)∵x∈R,∴当2x-
π
3
=
π
2
+2kπ(k∈Z)时,函数有最大值为3
解之得x=
12
+kπ(k∈Z),
得f(x)取得最大值的x集合为{x|x=
12
+kπ(k∈Z)}
(3)f(θ)=
5
3
即2sin(2θ-
π
3
)+1=
5
3

解之得sin(2θ-
π
3
)=
1
3

θ∈(0,
π
2
)
,得2θ-
π
3
∈(-
π
3
3

∴根据sin(2θ-
π
3
)=
1
3
1
2
,得2θ-
π
3
∈(0,
π
6

因此cos(2θ-
π
3
)=
1-(
1
3
)2
=
2
2
3

∴cos2θ=cos[(2θ-
π
3
)+
π
3
]=
2
2
3
×
1
2
-
1
3
×
3
2
=
2
2
-
3
6

cos4θ=2cos22θ-1=2(
2
2
-
3
6
2-1=
-7-4
6
18
点评:本题给出三角函数表达式,求函数的最小正周期并求函数的最值,着重考查了三角恒等变形、三角函数的图象与性质等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案