精英家教网 > 高中数学 > 题目详情
16.在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L距离”定义为:||P1P2||=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L距离”之和等于定值(大于||F1F2||)的点的轨迹可以是(  )
A.B.C.D.

分析 根据题意,设出F1,F2的坐标,再设动点M的坐标,可得|x+c|+|x-c|+2|y|=m,分类讨论消去绝对值,化简方程,进而结合选项分析可得答案.

解答 解:设F1(-c,0),F2(c,0),
再设动点M(x,y),动点到定点F1,F2的“L-距离”之和等于m(m>2c>0),
由题意可得:|x+c|+|y|+|x-c|+|y|=m,即|x+c|+|x-c|+2|y|=m.
当x<-c,y≥0时,方程化为2x-2y+m=0;
当x<-c,y<0时,方程化为2x+2y+m=0;
当-c≤x<c,y≥0时,方程化为y=$\frac{m}{2}$-c;
当-c≤x<c,y<0时,方程化为y=c-$\frac{m}{2}$;
当x≥c,y≥0时,方程化为2x+2y-m=0;
当x≥c,y<0时,方程化为2x-2y-m=0.
结合题目中给出的四个选项可知,选项A中的图象符合要求.
故选:A.

点评 本题考查轨迹方程的求法,涉及分类讨论求解析式方程,解答的关键是正确分类讨论,求出每一种情况下的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明:$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$+…+$\frac{{a}_{n}^{2}}{{n}^{2}}$<$\frac{9}{5}$(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=$\frac{3}{5}$,且an=2-$\frac{1}{{{a_{n-1}}}}$(n≥2),数列{bn}满足bn=$\frac{1}{{{a_n}-1}}$.
(1)求证:数列{bn}是等差数列;
(2)求数列{an}中最大项、最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.({t为参数,0<α<\frac{π}{2}})$,若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ+4cosθ=ρ(ρ≥0,0≤θ≤2π).
(Ⅰ)当$α=\frac{π}{3}$时,求直线l的普通方程;
(Ⅱ)若直线l与曲线C相交A,B两点.求证:$\overline{OA}$•$\overline{OB}$是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C的对边,且$\frac{cosC}{cosB}$=$\frac{3a-c}{b}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,点E满足$\overrightarrow{BE}=3\overrightarrow{EC}$,且$\overrightarrow{AE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,则m-n=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tsinφ}\\{y=2+tcosφ}\end{array}\right.$(t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设复数z=1+i(i是虚数单位),则z2-2iz的值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x≥2,或x≤-1},B={x|log3(2-x)≤1},则A∩(∁RB)=(  )
A.{x|x<-1}B.{x|x≤-1,或x>2}C.{x|x≥2,或x=-1}D.{x|x<-1,或x≥2}

查看答案和解析>>

同步练习册答案