精英家教网 > 高中数学 > 题目详情
1.在△ABC中,点E满足$\overrightarrow{BE}=3\overrightarrow{EC}$,且$\overrightarrow{AE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,则m-n=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

分析 根据向量的加减的几何意义即可求出答案

解答 解:∵点E满足$\overrightarrow{BE}=3\overrightarrow{EC}$,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{3}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
∴m=$\frac{1}{4}$,n=$\frac{3}{4}$,
∴m-n=-$\frac{1}{2}$,
故选:B

点评 本题考查了向量加减的几何意义,这里利用平面向量基本定理,进行转化计算,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(-1,3)与$\overrightarrow{b}$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow{b}$的坐标,并求|5$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点与它的一个顶点的连线构成等腰直角三角形,直线x+y=0与以椭圆C的右顶点为圆心,以2b为半径的圆相交所得的弦长为2$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过椭圆C右焦点F2的直线l与椭圆交于点P、Q,若以OP,OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设△ABC的面积为S1,它的外接圆面积为S2,若△ABC的三个内角大小满足A:B:C=3:4:5,则$\frac{{S}_{1}}{{S}_{2}}$的值为(  )
A.$\frac{25}{12π}$B.$\frac{25}{24π}$C.$\frac{3+\sqrt{3}}{2π}$D.$\frac{3+\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L距离”定义为:||P1P2||=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L距离”之和等于定值(大于||F1F2||)的点的轨迹可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{ax,x<0}\end{array}\right.$若方程f(-x)=f(x)有五个不同的根,则实数a的取值范围为(  )
A.(-∞,-e)B.(-∞,-1)C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别是棱BC,CC1,CD的中点,平面α过点B1且与平面EFG平行,则平面α被该正方体外接球所截得的截面圆的面积为为$\frac{2}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x、y满足$\left\{\begin{array}{l}{-2x+1≤y≤2x-1}\\{0<x≤3}\end{array}\right.$,则x-2y的取值范围是[-7,13].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

(1)求分数在[50,60)内的频率、全班人数及分数在[80,90)内的频数;
(2)若要从分数在[80,100)内的试卷中任取两份分析学生的失分情况,求在抽取的试卷中,至少有一份试卷的分数在[90,100)内的概率.

查看答案和解析>>

同步练习册答案