精英家教网 > 高中数学 > 题目详情
4.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明:$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$+…+$\frac{{a}_{n}^{2}}{{n}^{2}}$<$\frac{9}{5}$(n≥2).

分析 (Ⅰ)根据数列的递推关系可得(n+1)(an+1+1)(an+1-1)=(an-1)(nan+n+1),再根据an>0,可得an+1-1与an-1同号,问题得以证明,
(Ⅱ)先判断出1<an≤2,再得到an2≤$\frac{2n+2}{n}$,n≥2,利用放缩法得到$\frac{{a}_{n}^{2}}{{n}^{2}}$≤2($\frac{1}{n-1}$-$\frac{1}{n}$)+($\frac{1}{n-1}$-$\frac{2}{n}$+$\frac{1}{n+1}$),再分别取n=2,3,以及n≥4即可证明.

解答 证明:(Ⅰ)由题意得(n+1)an+12-(n+1)=nan2-n+an-1,
∴(n+1)(an+1+1)(an+1-1)=(an-1)(nan+n+1),
由an>0,n∈N*,
∴(n+1)(an+1+1)>0,nan+n+1>0,
∴an+1-1与an-1同号,
∵a1-1=1>0,
∴an>1;
(Ⅱ)由(Ⅰ)知,故(n+1)an+12=nan2+an<(n+1)an2
∴an+1<an,1<an≤2,
又由题意可得an=(n+1)an+12-nan2
∴a1=2a22-a12,a2=3a32-2a22,…,an=(n+1)an+12-nan2
相加可得a1+a2+…+an=(n+1)an+12-4<2n,
∴an+12≤$\frac{2n+4}{n+1}$,即an2≤$\frac{2n+2}{n}$,n≥2,
∴$\frac{{a}_{n}^{2}}{{n}^{2}}$≤2($\frac{1}{{n}^{2}}$+$\frac{1}{{n}^{3}}$)≤2($\frac{1}{n-1}$-$\frac{1}{n}$)+($\frac{1}{n-1}$-$\frac{2}{n}$+$\frac{1}{n+1}$),n≥2,
当n=2时,$\frac{{a}_{2}^{2}}{{2}^{2}}$=$\frac{3}{4}$<$\frac{9}{5}$,
当n=3时,$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$≤$\frac{3}{4}+\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}$<$\frac{3}{4}$$+\frac{1}{3}$<$\frac{9}{5}$,
当n≥4时,$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$+…+$\frac{{a}_{n}^{2}}{{n}^{2}}$<2($\frac{1}{4}$+$\frac{1}{9}$+$\frac{1}{16}$+$\frac{1}{4}$)+($\frac{1}{4}$+$\frac{2}{27}$+$\frac{1}{3}$-$\frac{1}{4}$)=1+$\frac{2}{9}$+$\frac{1}{8}$+$\frac{1}{4}$+$\frac{2}{27}$+$\frac{1}{12}$<$\frac{9}{5}$,
从而,原命题得证

点评 本题考查了数列的递推关系和数列和不等式的问题,关键是放缩,考查了学生的解决问题的能力和和观察能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输入n=10,则输出S=(  )
A.$\frac{4}{9}$B.$\frac{5}{11}$C.$\frac{6}{13}$D.$\frac{36}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:$\frac{1}{cos80°}$-$\frac{\sqrt{3}}{sin80°}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>0,且a≠1,若ab>1,则(  )
A.ab>bB.ab<bC.a>bD.a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{4}$,b=$\sqrt{6}$,△ABC的面积为$\frac{3+\sqrt{3}}{2}$,则c=1+$\sqrt{3}$,B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(-1,3)与$\overrightarrow{b}$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow{b}$的坐标,并求|5$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin(x+$\frac{π}{6}$)-2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函数f(x)的值;
(2)求函数f(x)的值域和对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知在△ABC中,AB=AC=6,∠BAC=120°,D是BC边上靠近点B的四等分点,F是AC边的中点,若点G是△ABC的重心,则$\overrightarrow{GD}$•$\overrightarrow{AF}$=-$\frac{21}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L距离”定义为:||P1P2||=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L距离”之和等于定值(大于||F1F2||)的点的轨迹可以是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案