精英家教网 > 高中数学 > 题目详情
设数列{an}的通项an=4n-1,数列{bn}的通项bn=3n-1,求{an•bn}的前n项和Tn
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:求出{an•bn}的通项公式,利用错位相减法即可得到结论.
解答: 解:∵an=4n-1,bn=3n-1,
∴an•bn=(3n-1)4n-1
则{an•bn}的前n项和Tn=2•40+5•41+8•42+…+(3n-1)•4n-1
则4Tn=2•41+5•42+8•43+…+(3n-1)•4n
两式相减得-3Tn=2+3•41+3•42+3•43+…+3•4n-1-(3n-1)•4n=2+
3•4(1-4n-1)
1-4
-(3n-1)•4n
=-2+4n-(3n-1)•4n=-2+(2-3n)4n
则Tn=
2
3
-
2-3n
3
4n
点评:本题主要考查数列的求和,利用错位相减法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex(ax+b)-x2+4x,曲线y=f(x)在点(0,f(0))处切线方程为y=2x-3.
(Ⅰ)求a,b的值;
(Ⅱ)讨论f(x)的单调性,并求f(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一个数a1,a2,a5,…构成公差为d的等差数列;②从第二行起,每行各数按从左到右的顺序都构成公比为q的等比数列.若a1=1,a3=4,a5=3.
(Ⅰ)求d,q的值;
(Ⅱ)求第n行各数的和T.

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是某次自主招生考试中,某学习小组的4名同学的数学、物理成绩:
学   生ABCD
数学(x)130125120145
物理(y)125120105130
(1)根据表中数据,用最小二乘法求物理分数y关于数学分数x的回归直线方程
y
=
b
x+
a

(2)若某同学在此次考试中数学得分为116.利用(1)中所求出的直线方程预测他本次考试的物理成绩.
附:回归方程
y
=
b
x+
a
其中
b
=
 
 
n
i=1
(xi-
.
x
)(yi-
.
y
)
 
 
n
i-1
(xi-
.
x
)
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+k
ex
(其中k∈R),f′(x)为f(x)的导函数.
(Ⅰ)求证:曲线y=f(x)在点(1,f(1))处的切线不过点(2,0);
(Ⅱ)若在区间(0,1]中存在x0,使得f′(x0)=0,求k的取值范围;
(Ⅲ)若f′(1)=0,试证明:对任意x>0,f′(x)<
e-2+1
x2+x
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD与正方形BDEF所在的平面互相垂直,AB=1.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=ax2+bx+c(a>0)对任意的实数x,都有f(1+x)=4f(
x
2
)成立.
(1)求
b
a
c
a
的值;
(2)解关于x的不等式f(x)<4a;
(3)若f(0)=1且关于α不等式f(sinα)≤sinα+m恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∈R,函数f(x)=x2-2alnx.
(1)当a=1时,求f(x)的单调区间和最值;
(2)若a>0,试证明:“方程f(x)=2ax有唯一解”的充要条件是“a=
1
2
”.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c.若a=
2
,b=2,sinB+cosB=
2
,则角C的大小为
 

查看答案和解析>>

同步练习册答案