精英家教网 > 高中数学 > 题目详情
13.过点(-2,1)且与圆x2+2x+y2=0相切的直线方程为x=-2或y=1.

分析 把圆的方程化为标准方程,找出圆心坐标和半径r,直线与圆相切,所以圆心到直线的距离d等于半径r,分类讨论,利用点到直线的距离公式表示出d,让d等于r列出关于k的方程,求出方程的解即可确定出切线方程,综上得到两条满足题意的切线方程.

解答 解:把圆的方程x2+2x+y2=0化为标准方程得:(x+1)2+y2=1,
所以圆心坐标为(-1,0),半径r=1,
斜率不存在时,此时过点(-2,1)的切线方程为x=-2;
设切线的斜率为k,由切线过(-2,1),得到切线方程为:y-1=k(x+2),即kx-y+2k+1=0,
则有圆心到切线的距离d=$\frac{|k+1|}{\sqrt{{k}^{2}+1}}$=r=1,解得k=0,
所以切线方程为:y=1,
综上,所求切线的方程为x=-2或y=1.
故答案为:x=-2或y=1.

点评 此题考查了直线与圆相切满足的关系,同时要求学生灵活运用点到直线的距离公式,会把圆的方程化为标准方程,会从圆的标准方程找出圆心坐标和圆的半径,掌握当直线与圆相切时,圆心到直线的距离等于圆的半径是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的公共点,
(1)设a+b=2,当-1≤x≤1时,|f(x)|≤1,求f(x);
(2)当0<x<c时,恒有f(x)>0,且有f(c)=0,
①试求b的取值范围;
②若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.非空集合A={x|1≤x≤a},B={y|y=x+1,x∈A},C={y|y=x2,x∈A},若B∩C≠∅,则a的取值范围为a≥$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列函数的定积分:
(1)${∫}_{0}^{1}$cosxdx
(2)${∫}_{-2}^{4}$|x|dx
(3)${∫}_{0}^{\frac{π}{2}}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)2dx
(4)${∫}_{0}^{1}$($\frac{8}{π}$$\sqrt{1-{x}^{2}}$+6x2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线l的方向向量为$\overrightarrow{d}$=(2,-4,3),平面α的一个法向量为$\overrightarrow{n}$=(p,q,6),若l⊥α,则p=4;q=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式$\frac{4-x}{-{x}^{2}-4x-4}$<0的解集是(  )
A.(-∞,4)B.(4,+∞)C.(-∞,4)∪(4,+∞)D.(-∞,-2)∪(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2,M(x0,y0)(x0>0,y0>0)是双曲线C上的点,N(-x0,-y0),连接MF2并延长MF2交双曲线C于P,连接NF2,PN,若△NF2P是以∠NF2P为顶角的等腰直角三角形,则双曲线C的渐近线方程为(  )
A.y=±2xB.y=±4xC.y=±$\frac{\sqrt{6}}{2}$xD.y=±$\frac{\sqrt{10}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\frac{1}{1+x}$,g(x)=x2+2(x∈R).
(1)求f(x)的定义域;
(2)求f(2),g(2),f[g(2)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\sqrt{x+2}$+$\sqrt{4-x}$的定义域为(  )
A.{x|x≤-1}B.{x|-2≤x≤4}C.{x|x≤-2或≥4}D.{x|x≥4}

查看答案和解析>>

同步练习册答案