精英家教网 > 高中数学 > 题目详情
3.点A(0,-5)与圆C:(x-2)2+(y+3)2=2上点的距离的最大值为(  )
A.$\sqrt{2}$B.3$\sqrt{2}$C.3D.4$\sqrt{2}$

分析 A(0,-5)与圆C:(x-2)2+(y+3)2=2上一点的距离的最大值d=|AC|+r.(r是圆半径)

解答 解:圆C:(x-2)2+(y+3)2=2的圆心C(2,-3),半径r=$\sqrt{2}$,|AC|=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∴A(0,-5)与圆C:(x-2)2+(y+3)2=2上一点的距离的最大值:
d=|AC|+r=3$\sqrt{2}$.
故选:B.

点评 本题考查点到圆上一点距离的最大值的求法,是基础题,解题要注意两点间距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.△ABC,∠A≥∠B≥∠C,角A,B,C对应的边a,b,c成等差数列,且a2+b2+c2=147,则b的取值范围为($\sqrt{42}$,7].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是45°,则-2$\overrightarrow{a}$与3$\overrightarrow{b}$的夹角是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线2x-y+1=0与点(1,-2)为圆心的圆相交于A,B两点,且|AB|=4,则此圆的标准方程是(  )
A.(x-1)2+(y+2)2=16B.(x-1)2+(y+2)2=9C.(x+1)2+(y-2)2=9D.(x+1)2+(y+2)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一圆经过A(3,-2)、B(2,1)两点,求分别满足下列条件的圆的方程:
(1)圆心在直线x-2y-3=0上;
(2)在两坐标轴上的四个截距之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线l的方向向量为$\overrightarrow{d}$=(2,-4,3),平面α的一个法向量为$\overrightarrow{n}$=(p,q,6),若l⊥α,则p=4;q=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l1和l2在x轴上的截距相等,且它们的倾斜角互补.若直线l1过点P(-3,3),且点Q(2,2)到直线l2的距离为1,求直线l1和直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在三棱锥D-ABC中,DA⊥AC,DA⊥BC,AC=BC=1,AB=$\sqrt{3}$,AD=$\sqrt{2}$,求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如表中第一行和第一列都是首项为4,公差为3的等差数列,从第二行开始,以后各行也是等差数列,公差分别为5,7,9,11,13…,记第i行第j列的数为aij,求aij(用i,j表示)
 4 7 1013 1619 22 
 7 12 1722 27 32 37 
 10 17 2431 38 45 52 
 13 22 3140 49 58 67 
 16 27 3849 60 71 82 

查看答案和解析>>

同步练习册答案