精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为直角梯形,,且的中点,延长于点,且在底内的射影恰为的中点的中点,上任意一点.

1)证明:平面平面

2)求平面与平面所成锐角二面角的余弦值.

【答案】1)证明见解析;(2)

【解析】

1)根据平面ABCD,得到,由平面几何知识得到,从而得到平面,所以所以平面平面;(2)以为原点建立空间直角坐标系,得到平面和平面的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值.

1)由题意,ECD的中点,

因为平面ABCD平面ABCD

所以,又因为

所以垂直平分

所以

又因

所以为正方形,

所以

因为的中点,

所以

,所以

,所以平面

平面

所以平面平面.

(2)因为在底面ABCD内的射影恰为OA的中点H

所以.

因为,所以过点O分别作ADAB的平行线(如图),

并以它们分别为xy轴,

以过O点且垂直于平面的直线为z轴,

建立如图所示的空间直角坐标系,

所以

所以

设平面的一个法向量为

,所以

,则

由(1)知,平面,所以平面

所以为平面的一个法向量,

.

故平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中,边上的中垂线分别交于点,若,则( )

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某园林单位准备绿化一块直径为BC的半圆形空地,ABC外的地方种草,ABC的内接正方形PQRS为一水池,其余的地方种花.若BCa,∠ABC,设ABC的面积为S1,正方形的面积为S2

(1)a表示S1S2

(2)当a固定,变化时,求取最小值时的角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某公园有三个警卫室有直道相连,千米,千米,千米.

(1)保安甲沿从警卫室出发行至点处,此时,求的直线距离;

(2)保安甲沿从警卫室出发前往警卫室,同时保安乙沿从警卫室出发前往警卫室,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在公园内的最大通话距离不超过3千米,试问有多长时间两人不能通话?(精确到0.01小时)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,过点任作两条互相垂直的直线,分别交抛物线四点,分别为的中点.

1)求证:直线过定点,并求出该定点的坐标;

2)设直线交抛物线两点,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的右焦点为,过点的直线(不与轴重合)与椭圆相交于两点,直线轴相交于点,过点,垂足为D.

1)求四边形为坐标原点)面积的取值范围;

2)证明直线过定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,分别为的左、右顶点,直线的斜率之积为为椭圆的右焦点,直线.

1)求椭圆的方程;

2)直线过点且与椭圆交于两点,直线分别与直线交于两点.试问:以为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,设函数有最小值,求的值域.

查看答案和解析>>

同步练习册答案