分析 (1):首先由$\left\{\begin{array}{l}x=1+3cosω\\ y=2+3sinω\end{array}\right.$消去参数得普通方程,进一步把极坐标方程$\sqrt{2}ρcos(θ-\frac{π}{4})=a$,转化为普通方程.
(2)根据(1)得到的方程,利用直线和圆的位置关系,再判断如何利用点到直线的距离公式求出圆心只有到直线的距离只有等于2的情况下才符合题意.
解答 解:(1)由$\left\{\begin{array}{l}x=1+3cosω\\ y=2+3sinω\end{array}\right.$消去参数ω,得(x-1)2+(y-2)2=9,
所以曲线C1的普通方程为(x-1)2+(y-2)2=9.
由$\sqrt{2}ρcos(θ-\frac{π}{4})=a$,得ρcosθ+ρsinθ=a,即x+y-a=0,
所以曲线C2的直角坐标方程x+y-a=0.
(2)曲线C1是以(1,2)为圆心,以r=3为半径的圆,曲线C2是直线x+y-a=0.
由圆C1上有3个点到直线C2的距离等于1,
得圆心C1(1,2)到直线C2:x+y-a=0的距离等于2.
即$\frac{|1+2-a|}{{\sqrt{2}}}=2$,解得$a=3±2\sqrt{2}$,
即a的值为$3+2\sqrt{2}$或$3-2\sqrt{2}$.
点评 本题考查的知识点:参数方程与普通方程的互化,极坐标方程与普通方程的互化,直线和圆的位置关系,点到直线的距离公式的应用,属于基础题型.
科目:高中数学 来源: 题型:选择题
| A. | 1或3 | B. | 1或-3 | C. | -1或3 | D. | -1或-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com