精英家教网 > 高中数学 > 题目详情
已知集合M={x|-2≤x≤8},n={x|x2-3x+2≤0},在集合M中任取一个元素x,则“x∈M∩N”的概率是(  )
A、
1
10
B、
1
6
C、
3
10
D、
1
2
考点:几何概型
专题:概率与统计
分析:先根据集合A,B,求出A∩B,再利用长度型的几何概型的意义求解即可.
解答: 解:∵M={x|-2≤x≤8},
N={x|x2-3x+2≤0}={x|1≤x≤2},
∴M∩N=N={x|1≤x≤2},
∵集合M在数轴上对应区域的长度为10,
集合M∩N={x|1≤x≤2}在数轴上对应区域的长度为1,
∴在集合M中任取一个元素x,则“x∈M∩N”的概率是
1
10

故选:A.
点评:本题主要几何概型、集合的运算等基础知识,考查运算求解能力,长度型的几何概型的概率计算公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+1)+mx(x>-1).
(Ⅰ)若f(x)在x=1的切线平行于x轴,求实数m的值;
(Ⅱ)已知结论:对任意-1<a<b,存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
,求证:函数g(x)=
f(x2)-f(x1)
x2-x1
(x1-x)+f(x1)(其中-1<x1<x2)对任意x1<x<x2,都有f(x)>g(x);
(Ⅲ)已知正数λ1,λ2满足λ12=1,求证:对任意-1<x1<x2,都有f(λ1x12x2)>λ1f(x1)+λ2f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,角A,B,C成等差数列,则cosB=
 
;若同时边a,b,c成等比数列,则cos2A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin2θ+2cosθ=-2,则cosθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①设α是平面,m、n是两条直线,如果m?α,n?α,m、n两直线无公共点,那么n∥α;
②设α是一个平面,m、n是两条直线,如果m∥α,n∥α,则m∥n;
③若两条直线都与第三条直线平行,则这两条直线平行;
④三条直线交于一点,则它们最多可以确定3个平面.
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
0≤x≤2
x+y-2≥0
x-y+2≥0
,则目标函数z=3x-4y的最小值m与最大值M的积为(  )
A、-60B、-48
C、-80D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A、若m∥α,n∥α,则m∥n
B、若m∥n,m⊥α,则n⊥α
C、若m∥α,m∥β,则α∥β
D、若m∥α,α⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

设m、n是两条不同的直线,α、β是两个不同的平面.下列四个命题中,正确的是(  )
A、α∥β,m?α,n?β,则m∥n
B、α⊥β,m⊥β,则m∥α或m?α
C、α⊥β,m?α,n?β,则m⊥n
D、α∥β,m⊥β,n⊥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+3x|x-a|,其中a∈R,设a≠0,函数f(x)在开区间(m,n)上既有最大值又有最小值,求m、n的取值范围.

查看答案和解析>>

同步练习册答案