精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1,数列{bn}满足a1=b1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
bn
an
,求数列{cn}的前n项和Tn
(Ⅰ)由an+1=2Sn+1可得an=2Sn-1+1(n≥2),
两式相减得an+1-an=2an
an+1=3an(n≥2).
又a2=2S1+1=3,
所以a2=3a1
故{an}是首项为1,公比为3的等比数列.
所以an=3n-1
由点P(bn,bn+1)在直线x-y+2=0上,所以bn+1-bn=2.
则数列{bn}是首项为1,公差为2的等差数列.
则bn=1+(n-1)•2=2n-1
(Ⅱ)因为cn=
bn
an
=
2n-1
3n-1
,所以Tn=
1
30
+
3
31
+
5
32
++
2n-1
3n-1

1
3
Tn=
1
31
+
3
32
+
5
32
++
2n-3
3n-1
+
2n-1
3n

两式相减得:
2
3
Tn=1+
2
3
+
2
32
++
2
3n-1
-
2n-1
3n

所以Tn=3-
1
2•3n-2
-
2n-1
2•3n-1
=3-
n+1
3n-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案