精英家教网 > 高中数学 > 题目详情
18.给出定义:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m为整数),则m叫做离实数x最近的整数,记作[x]=m.在此基础上给出下列关于函数f(x)=|x-[x]|的四个结论:
①函数y=f(x)的定义域为R,值域为[0,$\frac{1}{2}}$];
②函数y=f(x)的图象关于直线x=$\frac{k}{2}$(k∈Z)对称;
③函数y=f(x)是偶函数;
④函数y=f(x)在[-$\frac{1}{2}$,$\frac{1}{2}}$]上是增函数,其中正确的结论的序号是(  )
A.①②③B.①③④C.②③④D.①②④

分析 根据让函数解析式有意义的原则确定函数的定义域,然后根据解析式易用分析法求出函数的值域;根据f(k-x)与f(-x)的关系,可以判断函数y=f(x)的图象是否关于直线x=$\frac{K}{2}$(k∈Z)对称;再判断f(-x)=f(x)是否成立,可以判断③的正误;而由①的结论,易判断函数y=f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上的单调性,但要说明④不成立,我们可以举出一个反例.

解答 解:①中,令x=m+a,a∈(-$\frac{1}{2}$,$\frac{1}{2}$],
∴f(x)=|x-[x]|=|a|∈[0,$\frac{1}{2}$]
故①正确;
②中∵f(k-x)=|(k-x)-[k-x]|=|(-x)-[-x]|=f(x),
所以关于x=$\frac{K}{2}$对称,故②正确;
③中,∵f(-x)=|(-x)-[-x]|=|x-[x]|=f(x),
所以f(x)为偶函数,故③正确;
④中,x=-$\frac{1}{2}$时,m=-1,f(-$\frac{1}{2}$)=$\frac{1}{2}$,x=$\frac{1}{2}$时,m=0,
f($\frac{1}{2}$)=$\frac{1}{2}$所以f(-$\frac{1}{2}$)=f($\frac{1}{2}$)故④错误.
故选:A

点评 本题考查的知识点是利用函数的三要素、性质判断命题的真假,我们要根据定义中给出的函数,结合求定义域、值域的方法,及对称性、周期性和单调性的证明方法,对4个结论进行验证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.计算下列各值.
(1)8${\;}^{\frac{2}{3}}$+($\frac{1}{3}$)0-log28+$\sqrt{9}$
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的通项公式an=2n-1,数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Tn为数列{bn}的前n项和.
(I)求Tn
(II)若对任意的n∈N*不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.画出下列函数图象并由图象观察定义域和值域.
(1)y=|x+3|;
(2)y=|2x2-3|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂制造A种仪器45台,B种仪器55台,现需用薄钢板给每台仪器配一个外壳.已知钢板有甲、乙两种规格:甲种钢板每张面积2m2,每张可做A种仪器外壳3个和B种仪器外壳5个,乙种钢板每张面积3m2,每张可做A种仪器外壳6个和B种仪器外壳6个.问甲、乙两种钢板各用多少张才能用料最省(“用料最省”是指所用钢板的总面积最小).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=a(x+1)2-4lnx,a∈R.
(Ⅰ)若a=$\frac{1}{2}$,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对任意x∈[1,e],f(x)<1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e为自然对数的底数),则f(f(1))=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{m}$=(2cosx,t)(t∈R),$\overrightarrow{n}$=(sinx-cosx,1),函数y=f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,将y=f(x)的图象向左平移$\frac{π}{8}$个单位长度后得到y=g(x)的图象且y=g(x)在区间[0,$\frac{π}{4}$]内的最大值为$\sqrt{2}$.
(1)求t的值及y=f(x)的最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,若$\sqrt{2}$g($\frac{A}{2}$-$\frac{π}{4}$)=-1,a=2,求BC边上的高的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.
(Ⅰ)若θ=$\frac{π}{2}$,且棱AB垂直于平面BCD,求四面体ABCD的体积;
(Ⅱ)当θ=$\frac{π}{2}$时,证明:四面体ABCD的体积为一定值;
(Ⅲ)求四面体ABCD的体积.

查看答案和解析>>

同步练习册答案