精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x+alnx,在x=1处的切线与直线x+2y=0垂直,函数$g(x)=f(x)+\frac{1}{2}{x^2}-bx$.
(1)求实数a的值;
(2)设x1,x2(x1<x2)是函数g(x)的两个极值点,若$b≥\frac{13}{3}$,求g(x1)-g(x2)的最小值.

分析 (1求出函数的导数,利用切线与已知直线垂直,列出方程,即可求解a的值.
(2)求出g'(x),列出求解函数的极值点的方程,利用韦达定理,化简g(x1)-g(x2),构造新函数,通过新函数的导数求解函数的最值.

解答 解:(1)直线x+2y=0的斜率为-$\frac{1}{2}$;
故在x=1处的切线的斜率为2;
f′(x)=1+$\frac{a}{x}$,
故f′(1)=1+a=2;
解得,a=1.
(2)$g(x)=f(x)+\frac{1}{2}{x^2}-bx$=x+lnx+$\frac{1}{2}$x2-bx,x>0
∴g′(x)=1+$\frac{1}{x}$+x-b=$\frac{{x}^{2}-(b-1)x+1}{x}$
令g′(x)=0,得x2-(b-1)x+1=0,∴x1+x2=b-1,x1x2=1,
∴g(x1)-g(x2)=(x1+lnx1+$\frac{1}{2}$x12-bx1)-(x2+lnx2+$\frac{1}{2}$x22-bx2)=ln$\frac{{x}_{1}}{{x}_{2}}$+$\frac{1}{2}$(x12-x22)-(b-1)(x1-x2)=ln$\frac{{x}_{1}}{{x}_{2}}$+$\frac{1}{2}$($\frac{{x}_{1}}{{x}_{2}}$-$\frac{{x}_{2}}{{x}_{1}}$),
∵0<x1<x2,设t=$\frac{{x}_{1}}{{x}_{2}}$,(0<t<1)
设h(x)=lnt-$\frac{1}{2}$(t-$\frac{1}{t}$),
则h′(x)=$\frac{1}{t}$-$\frac{1}{2}$(1+$\frac{1}{{t}^{2}}$)=-$\frac{(t-1)^{2}}{2{t}^{2}}$<0
∴(x1+x22=$\frac{({x}_{1}+{x}_{2})^{2}}{{x}_{1}{x}_{2}}$=t+$\frac{1}{t}$+2≥$\frac{100}{9}$
∵0<t<1,
∴9t2-82t+9≥0
解0<$\frac{1}{9}$≤t,
∴h(t)≥h($\frac{1}{9}$)=ln$\frac{1}{9}$-$\frac{1}{2}$($\frac{1}{9}$-9)=$\frac{40}{9}$-ln9
∴g(x1)-g(x2)的最小值$\frac{40}{9}$-ln9

点评 本题考查函数的导数的应用,函数的极值的求法韦达定理以及构造法的应用,考查分析问题解决问题的能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知圆(x-3)2+y2=4,圆的圆心为(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.${({x^2}-\frac{1}{x})^6}$的展开式中的常数项为(  )
A.20B.-20C.15D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若{an}是正项递增等比数列,Tn表示其前n项之积,且T10=T20,则当Tn取最小值时,n的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知幂函数$f(x)={x^{-{m^2}+2m+3}}$在(0,+∞)上为增函数,则m的取值范围是(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果f(x+π)=f(-x),且f(-x)=f(x),则f(x)可以是(  )
A.sin2xB.cosxC.sin|x|D.|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某固定在墙上的广告金属支架如图所示,根据要求,AB长要超过4米(不含4米),C为AB的中点,B到D的距离比CD的长小1米,∠BCD=60°
(1)若CD=x,BC=y,将支架的总长度表示为y的函数,并写出函数的定义域.(注:支架的总长度为图中线段AB、BD和CD的长度之和)
(2)如何设计AB、CD的长,可使支架总长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知顶点在原点,焦点在x轴上的抛物线过点(1,2)
(Ⅰ)求抛物线的标准方程;
(Ⅱ)直线y=x-4与抛物线相交于AB两点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知M(1,4),N(3,2)为圆C上的两点,且直线2x-3y+6=0为圆C的一条对称轴.
(1)求过点(5,1)且与圆C相切的直线方程;
(2)若过点P(1,0)的直线l与圆C相交所得的弦的中点为A,与直线m:x+2y+2=0的交点为B,试判断|PA|•|PB|是否为定值?若是,则求出定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案